<<
>>

Роль сердечно-сосудистой системы в процессах адаптации к гипоксии

Адаптация сердечно-сосудистой системы к меняющимся требованиям организма составляет необходимое звено приспособления к физическим нагрузкам, высоте, холоду, экстремальным ситуациям.

Термин “адаптация сердца” является условным, так как адаптация - реакция целого организма, в которой сердце играет роль жизненно важного звена. Приспособительные реакции организма в целом и сердца в частности делятся на 2 связанных между собой класса, а именно на реализующиеся “с места” реакции срочного приспособления и на постепенно формирующиеся реакции долговременного приспособления (Ф. 3. Меерсон, 1978).

К настоящему времени адаптационная кардиопротекция является установленным и достаточно изученным фактом как в клинике, так и в эксперименте (Ф. 3. Меерсон и соавт., 1988; В. И. Кузнецов, 1991; И. А. Алешин и соавт., 1997; Э. Э. Алекперов, 1998; Н. В. Кизиченко, Ю. В. Архипенко, 1998).

Сравнивая влияние различных видов адаптации на сократительную функцию и биоэнергетическую активность миокарда было выявлено, что адаптация к гипоксии повышает устойчивость к ишемическому и реперфузионному повреждению лишь в условиях целого организма (Ф. 3. Меерсон и соавт., 1991; Ф. 3. Меерсон, М. Г. Пшенникова, 1993; Л. Ю. Голубева и соавт., 1995).

Снижение парциального давления кислорода в окружающем воздухе приводит к включению различных механизмов компенсации, направленных на достижение должного снабжения тканей кислородом. В этих условиях главные пути адаптации связаны с интенсификацией работы циркуляторного аппарата, системы дыхания и повышением пластической функции костного мозга (А. Ю. Тилис, 1976).

Установлено, что при адаптации к высотной гипоксии сердце не только омывается кровью обедненной кислородом, но и осуществляет гиперфункцию, необходимую для обеспечения увеличенного минутного объема и преодоления возросшего сопротивления в малом круге кровообращения.

Согласно Ф. 3. Меерсону (1991, 1993), в процессе адаптации к этим факторам в миокарде развивается активация синтеза нуклеиновых кислот и белков, которая приводит к гипертрофии и возникновению комплекса структурных изменений.

Главное место в этом комплексе занимает увеличение массы структур, ответственных за энергообеспечение функции сердца. Так, при сформировавшейся адаптации доказано увеличение емкости и пропускной способности коронарного русла (А. А.Нурматов, 1972; A. Kerr et al., 1965), увеличение концентрации миоглобина (D. V. Tappel et al., 1957), усиление активности лактатдегидрогеназы и гексокиназы, то есть ферментов, ответственных за транспорт глюкозы в систему гликолиза и пирувата в митохондрии (Bass et al., 1974), увеличение содержания в миокарде самих митохондрий.

Эти, и возможно, другие структурные изменения в миокарде приводят к определенным изменениям его физиологических параметров, а именно к увеличению максимальной силы развиваемого изометрического сокращения, возрастанию частоты сокращений, увеличению степени потенциации при парной стимуляции и навязывании высокой частоты сокращений (Ф. 3. Меерсон, В. И. Капелько, 1969), а также к усилению эффективности использования кислорода как изолираванным сердцем, так и сердцем, работающим в условиях целого организма (Ф. 3. Меерсон и соавт., 1975; Moret et al., 1972).

Сердечно-сосудистая система реагирует на снижение парциального давления кислорода во вдыхаемом воздухе учащением ритма сердечных сокращений, что было установлено еще в начале XX века (Лютц, Шнайдер, 1919). Аппарат кровообращения реагирует уже на высоту порядка 1000 м (М. М. Миррахимов, 1968).

Кратковременное пребывание в условиях высокогорья характеризуется нарастанием темпа сердечной деятельности, что обнаруживается во всех без исключения регионах и подтверждается многочисленными исследованиями: в высокогорьях Альп (Ewig, Hinsberg, 1930; Reichel, 1944; Haus, Jungmann, 1953; Wiesinger, 1956 и др.), Гималаев (Hartmann, 1931; Wyss-Dunant, 1955; Pugh, Ward, 1956; Jackson, Davis, 1960 и др.), Кавказа (А.

В. Фомичев, 1935; О. В. Минут-Сорохтина, Н. В. Раева, 1938; Н. Н. Яковлев, Н. И. Тавасштерна, 1955; А. 3. Колчинская, В. В. Туранов, А. П. Морозов, 1958; Г. А. Наргизян, 1958; Н. Н. Гаджиев, 1959; А. 3. Колчинская, 1960 и др.), Памира (Г. К. Горбачев, 1890; Н. Н. Третьяков, 1897; И. П. Плотников, 1963), Тянь-Шаня (В. К. Соловьев, 1935; А. И. Казанцев, 1940; А. С. Шаталина, 1954а, б; М. М. Миррахимов, 1968).

Наблюдения этих авторов касаются альпинистов или участников военизированных восхождений, когда испытуемые в процессе восхождения в горную местность выполняют физическую работу.

В условиях же основного обмена и в горизонтальном положении испытуемых заметного учащения частоты сердечных сокращений не наблюдается. Лишь на относительно больших высотах (выше 3300 м) при одновременном выполнениии физической нагрузки наблюдается учащение пульса (М. М. Миррахимов, 1968).

Главное значение в механизме учащения пульса имеет возбуждение симпатической нервной системы (Л. А. Орбелли, 1940) и сдвиги в функциональной деятельности коры головного мозга (Н. Н. Сиротинин, 1953). Небольшая степень гипоксемии, наблюдающаяся на небольших высотах, сама по себе оказать прямого стимулирующего влияния на сердечную деятельность не может (М. М. Миррахимов, 1968).

Большинство исследователей полагают, что частота пульса по мере акклиматизации к высоте постепенно выравнивается и достигает исходного уровня. Исходя из таких представлений можно было бы полагать, что у акклиматизированных людей частота пульса не отличается от той, какая характерна для жителей равнин. Однако такое представление не подтверждается. Исследования, проведенные в различных горных системах над аборигенами и людьми, проживающими там на протяжении многих лет, указывают на брадикардию и наклонность к ней (А. И. Ярко, 1934; Г. И. Конради, 1947; С. Б. Данияров, 1949; М. И. Редлих, 1951; М. Е. Вольских, 1958, 1962; Л. Г. Филатова, 1961; И. И. Плотников, 1963; М. М. Миррахимов, 1968; Mong, 1943).

М. М. Миррахимов (1968) полагает, что закономерность, с какой обнаруживается брадикардия у аборигенов и у людей, долгое время живущих на высотах, позволяет рассматривать брадикардию как характерную реакцию для условий высокогорья.

Вероятнее всего, брадикардия в условиях длительного проживания на высотах является приспособительной реакцией, обеспечивающей лучшее наполнение сердца во время диастолы и более экономное расходование энергии в самой сердечной мышце.

Исследования М. М. Миррахимова и сотрудников (1960; 1963) позволяют говорить о том, что брадикардия является результатом ваготонической направленности вегетативных функций нервной системы.

Артериальное давление (АД) — важный гемодинамический фактор, от уровня которого зависит нормальное кровоснабжение органов и тканей организма человека.

По изменению уровня АД при пребывании человека в условиях высокогорья имеются противоречивые данные. Так, по данным Reichel (1944), 2-4-недельное пребывание на высотах 3000, 3500, 4500 м в Альпах вызывало повышение АД (у 3 из 6 обследованных); пульсовая амплитуда при этом не изменялась. Веупе (1948) подчеркивает, что у находящихся в горах людей имеет место небольшое повышение АД, так как одновременно наблюдается расширение сосудов.

Пребывание в высокогорьях Кавказа (Абастумани 1275 - 1340 м) по мнению О. В. Мерабишвили и В. В. Маргалитадзе (1957) регулирующим образом влияет на АД: повышенное - снижается, пониженное - увеличивается, нормальное - большей частью стабилизируется.

Сдвиги АД при восхождении на большие высоты, видимо, являются более стойкими. Так, по данным А. В. Фомичева (1935), проводившего наблюдения над 9 участниками военизированного высокогорного восхождения на Эльбрус, повышенное давление АД держалось еще на протяжении 10 дней после возвращения в Москву. По данным Н. А. Гаджиева (1956, 1959), у спортсменов, совершавших восхождение на высоты Кавказа (4000 - 5000 м), также отмечено нарастание уровня как

систолического (на 25 мм), так и диастолического давления (на 15 мм). О. П. Минут-Сорохтина и Н. В. Раева (1938) считают, что АД снижается в тех случаях, когда наблюдается учащение пульса и увеличение минутного объема сердца. Изменения АД авторы связывают со сдвигами в периферическом сосудистом тонусе и перераспределением крови.

А. Д. Слоним и сотрудники (1949) при острой акклиматизации к высокогорью Тянь-Шаня наблюдали снижение АД.

По данным М. М. Миррахимова (1968) пребывание на умеренной высоте (перепад высоты составляет 1360 м) сопровождается снижением систолического давления при относительно стабильных величинах диастолического давления. Видимо, уменьшение систолического давления нужно связывать со снижением сосудистого тонуса, поскольку исследование минутного объема сердца обнаружило его нарастание, что отвергает возможность ослабления миокарда.

Нарастание среднеартериального давления сопровождается усилением кровоснабжения органов и тканей, так как возрастает градиент системного кровотока. Это происходит благодаря усилению и увеличению систолы желудочков сердца, что подтверждается исследованиями минутного объема сердца на высотах.

Снижение парциального давления кислорода вызывает существенное перераспределение кровотока: его увеличение в мозге, сердечной мышце, легких (М. Е. Маршак, 1940; В. И. Войткевич, 1958; Е. М. Крепе, 1958; М. М. Миррахимов, 1968; С. Б. Данияров, 1979; Ф. 3. Меерсон, М. Г. Пшенникова, 1988).

А. Гайтон (1969) ведущую роль в регуляции кровотока отводил кислородному запросу органов и тканей. Согласно метаболической теории регуляции кровообращения, приверженцем которой он был, минутный объем кровообращения изменяется в зависимости от кислородного запроса органов и метаболизма в них.

Безусловно, повышение потребления кислорода при отсутствии увеличения кровотока вызывает падение напряжения кислорода в венозной крови. Если бы не увеличивался газообмен в легких, снижалось бы напряжение кислорода в артериальной крови и управление кровотоком осуществлялось бы в функциональной системе дыхания по первому принципу - управление с обратной связью, в котором роль чувствительного элемента играют каротидные и аортальные хеморецепторы (А. 3.

Колчинская, 1983). Кроме того, существенную роль в регуляции кровотока имеют контуры его саморегуляции в тканях, в которых кровоток в мельчайших сосудах в тканях увеличивается из-за того, что снижение напряжения кислорода ниже критических уровней приводит к нарушению сократительной способности мышечных элементов сосудистой стенки.

Это ведет к увеличению просвета мелких сосудов, к перераспределению кровотока и к снижению общего давления крови, на что реагируют барорецепторы. Общий кровоток увеличивается. Необходимость поиска рецепторов, реагирующих на напряжение кислорода в венозной крови, в этом случае отпадает (А. 3. Колчинская, 1999).

Несомненно, что в регуляции сердечного ритма, а с ним и объемной скорости кровотока, немаловажную роль играет и содержание гемоглобина и кислорода в крови. О роли этих факторов и предположительных механизмах их влияния позволяют думать (А. 3. Колчинская, М. П. Закусило, П. А. Радзиевский, 1998, 1999) следующие факты. Частота сердечных сокращений у больных с анемией при не сниженном напряжении кислорода в артериальной крови находится почти в прямой зависимости от содержания в ней кислорода. Повышение содержания гемоглобина и кислорода в крови в результате адаптации к гипоксии сопровождается снижением частоты сердечных сокращений и минутного объема крови как в покое, так и при физической нагрузке. От содержания кислорода и минутного объема кровообращения зависит скорость доставки кислорода артериальной кровью к тканям. Не только снижение напряжения кислорода в артериальной крови до уровней ниже критических, но и снижение отношения скорости доставки кислорода и должной скорости его потребления более чем в 2 раза вызывает падение напряжения кислорода в тканях до критических уровней, а с ним - и снижение потребления кислорода (А. 3. Колчинская, Б. X. Хацуков, М. П. Закусило, 1999).

Замедление скорости кровотока, по данным А. Г. Дембо и А. М. Тюрина (1961), является компенсаторным фактором. Авторы предполагают, что такая ситуация складывается вследствие “экономного обмена веществ”: у спортсменов - в результате тренировки, а у сердечных больных - вследствие снижения “интенсивности обменных процессов в результате нарушения кровообращения” (А. Г. Дембо, А. М. Тюрин, 1961).

Замедление скорости кровотока у жителей высокогорья в значительной степени, так же как и у спортсменов, обусловлено снижением интенсивности обменных процессов и особенно основного обмена веществ (А. Д. Слоним и соавт., 1949; Л. Г. Филатова, 1961; А. Д. Джайлобаев, 1962; М. М. Миррахимов, 1968). Снижение основного обмена связывают с гипофункцией щитовидной железы (Е. В. Колпаков, Н. В. Лауэр, 1949; С. X. Хамитов, 1960, 1961; А. А. Браун, М. М. Миррахимов, 1964; и др.).

Некоторые авторы (А. Г. Генецинский, 1942; 3. И. Барбашова, 1942, 1960; А. Д. Слоним, 1949; Н. А. Вержбинская, 1960; A. Hurtado, 1960) снижение энергетических затрат связывают с тканевой акклиматизацией.

Известно, что при гипоксии происходит значительное усиление работы дыхательной мускулатуры и миокарда (С. Б. Данияров, 1979), делающее эту реакцию организма на дефицит кислорода весьма энергоемкой. Поэтому важным механизмом в приспособлении к гипоксии является достижение оптимального уровня затрат энергии (В. В. Хаскин, 1976). Для этого в животном организме в условиях гипоксии включается целый каскад приспособительных реакций: увеличение кровонаполнения и диффузионной поверхности легких, снижение сопротивления сосудистого русла ( А. Хуртадо, 1963; Э. Ван Лир, К. Стикней, 1967); усиление эритропоэза и кислородной емкости крови (3. И. Барбашова, 1963; В. И. Войткович, 1973; В. А. Исабаева, 1975); качественные сдвиги в биоэнергетических системах (3. И. Барбашова, 1970; Ф. 3. Меерсон и соавт., 1973, 1989, 1993); значительное снижение энергетики мышечного сокращения (Ю. И. Баженов, 1986); изменения физиологических функций организма по типу энергоэкономии (Н. А. Агаджанян и соавт., 1987); уменьшение энергетики генераторно­электрических функций плазматических мембран нейронов (М. Т. Шаов и соавт., 1988, 1990, 1996).

Парциальное давление кислорода в альвеолярном воздухе и его напряжение в артериальной и смешанной венозной крови, а следовательно, и в тканях у горцев выше, чем у неакклиматизированных лиц, что наряду с хорошо развитыми тканевыми механизмами (большей капилляризацией тканей, более высокой концентрацией и активностью дыхательных ферментов) предохраняет организм горцев от развития тканевой гипоксии. У горцев адаптивные сдвиги в системе транспорта кислорода к тканям, такие, как более высокая общая емкость легких, повышенная легочная и альвеолярная вентиляция, увеличение отношения альвеолярной вентиляции к минутному объему дыхания, высокие кислородные емкости крови, насыщение артериальной крови кислородом, содержание в ней кислорода, обеспечивают большую скорость доставки кислорода к тканям, чем у неакклиматизированных лиц, что повышает напряжение кислорода в крови и тканях, создает лучшие условия для утилизации кислорода в тканях (М. Т. Керефов, 1983).

В ряде исследований показано, что пребывание в высокогорье приводит к развитию капиллярной системы не только в легких, но и в мышечной ткани (N. Banchero, 1975; N. Banchero et al., 1980; M. Van Bai, N. Banchero, 1980), к увеличению плотности капилляров и улучшению диффузионных параметров в скелетных и сердечной мышцах.

Лучшей доставке кислорода к тканям у горцев способствует повышенное содержание 2,3-дифосфоглицерата в эритроцитах, обусловливающее меньшее сродство гемоглобина к кислороду, сдвиг кривой диссоциации оксигемоглобина вправо и более полную отдачу кислорода тканям. Облегчению диффузии кислорода способствует более высокая концентрация миоглобина в мышцах (В. Reynafarje, 1962).

При адаптации к гипоксии увеличивается содержание миоглобина - тканевого акцептора и переносчика кислорода в сердечной и скелетной мышцах, что ведет к увеличению резерва кислорода и повышению

резистентности.

При недостатке кислорода большое значение имеет поддержание функциональной активности тканей и органов, которая зависит от компенсаторных способностей биоэнергетических механизмов и транспортных систем клетки.

Тренировка к гипоксии направленно приспосабливает обмен тканей к дефициту кислорода, активизируя анаэробный путь образования энергии, о чем свидетельствует повышение содержания ферментов, участвующих в гликолизе и ускорении распада глюкозы до лактата (Г. А. Захаров, 1977).

Так как сердечная мышца отличается высокой интенсивностью окислительного обмена, а гликолитический путь распада углеводов занимает небольшое место, то состояние окисления при гипоксии имеет большое значение. В условиях целого организма необходимое увеличение минутного объема сопровождается увеличенным расходом АТФ в миофибриллах и увеличением использования кислорода и ресинтеза АТФ в митохондриях. При этом в начале ресинтез АТФ отстает от ее гидролиза в миофибриллах, и новое равновесие между этими процессами устанавливается при некотором снижении концентрации богатых энергией фосфорных соединений и увеличенной концентрации продуктов их распада. Этот сдвиг через механизм сопряжения электронного транспорта и окислительного фосфорилирования поддерживает ресинтез АТФ в митохондриях на высоком уровне, составляя, таким образом, необходимое звено энергетического обеспечения срочной адаптации сердца (Ф. М. Меерсон, 1978). Установлено, что при адаптации к высотной гипоксии не отмечается существенных нарушений в системе окисления и окислительного фосфорилирования, а повышенное усвоение кислорода у тренированных животных обеспечивает сгорание энергетических субстратов, о чем свидетельствуют усиление активности ферментов окисления и цикла Кребса (Г. А. Захаров, 1977).

В работах Ф. 3. Меерсона (1973, 1975, 1978, 1993) отмечено, что под влиянием барокамерной тренировки и в условиях высокогорья происходит активация синтеза нуклеиновых кислот и белков в миокарде, что повышает резистентность сердечной мышцы. В результате такой активации развивается комплекс структурных изменений, ответственных за долговременную адаптацию.

Эксперименты показали, что активация синтеза нуклеиновых кислот и белков постоянно наблюдается при адаптации к гипоксии в системе крови (Н. П. Благовестова и соавт., 1968), сердца (Ф. 3. Меерсон, 1973), легких, а так же в системах, не имеющих непосредственного отношения к транспорту

кислорода, и прежде всего в головном мозге.

Адаптация приводит к развитию в системах транспорта кислорода и в системах его утилизации структурных изменений, повышающих возможность этих систем транспортировать и утилизировать кислород и субстраты окисления. Так, именно активация биосинтеза белка ответственна за гипертрофию легких и увеличение их дыхательной поверхности, за полицитемию и увеличение кислородной емкости крови, за развитие в миокарде изменений, увеличивающих функциональные возможности сердца. С другой стороны, активация биосинтеза белков в головном мозге сопровождается повышением там активности дыхательных ферментов (И. М. Хазен, Е. И. Кузнец, 1958; Е. Ю. Ченыкаева, Г. Ф. Дегтярева, 1966; А. Hamberger, Н. Hyden, 1963), обеспечивает рост сосудов и, таким образом, может играть роль в увеличении способности клеток головного мозга утилизировать кислород и осуществлять ресинтез АТФ, несмотря на

гипоксемию.

Начальным звеном всякой реакции организма при неблагоприятных жизненных ситуациях почти всегда является симпатическая нервная система (Л. А. Орбели, 1941), возбуждение которой инициирует выделение гормонов мозговым слоем надпочечников.

Адреналин и норадреналин, включаясь в биохимическую динамику клетки, приспосабливают каждую клетку и каждый орган к любым воздействиям, осуществляя адаптацию на клеточном и органном уровнях.

В начальном периоде действия гипоксии возрастает трата норадреналина, сопровождающаяся падением его содержания в миокарде;

одновременно развивается выраженная активация синтеза нуклеиновых кислот и белков в регулирующих деятельность сердца симпатических нейронах, которая приводит к гипертрофии указанных нейронов. Эти изменения закономерно сопровождаются восстановлением содержания

норадреналина в миокарде.

В дальнейшем у адаптированных к гипоксии животных большие нагрузки на сердце, вызванные сужением аорты или длительным плаванием,

сопровождаются меньшим снижением содержания катехоламинов в миокарде, чем у неадаптированных (Ф. М. Меерсон, 1973). Эти данные позволяют заключить, что активация биосинтеза нуклеиновых кислот и белков приводит в процессе адаптации к гипоксии и увеличению мощности адренергического отдела нервного аппарата сердца - к увеличению его способности синтезировать и выделять норадреналин.

Итак, в процессе адаптации возрастает адренореактивность сердца и способность механизмов его саморегуляции поддерживать функцию органа после прекращения нервных влияний, то есть происходит увеличение

степени автономности.

2.

<< | >>
Источник: Темботова Ирина Исламовна. Действие биоантиоксидантов облепихи крушиновидной на физиологические показатели сердечно-сосудистой системы человека. 2005

Еще по теме Роль сердечно-сосудистой системы в процессах адаптации к гипоксии:

  1. ТЕМА № 19 БЕРЕМЕННОСТЬ И РОДЫ ПРИ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЯХ, АНЕМИЯХ, ЗАБОЛЕВАНИЯХ ПОЧЕК, САХАРНОМ ДИАБЕТЕ, ВИРУСНОМ ГИПАТИТЕ, ТУБЕРКУЛЕЗЕ
  2. ТЕМА № 20 ПЛАЦЕНТАРНАЯ НЕДОСТАТОЧНОСТЬ ГИПОКСИЯ ПЛОДА И АСФИКСИЯ НОВОРОЖДЕННОГО
  3. 1.6. Некоторые «парадоксальные» феномены при старении
  4. 1.7.1. Атеросклероз
  5. 1.9. Антиоксиданты как геропротекторы
  6. 6.3. Задачи и организационная структура санитарно-эпидемиологического отряда и его подразделений.
  7. Дегидратационный шок
  8. Гипертрофия
  9. Компенсаторные реакции при гипоксии
  10. Роль сердечно-сосудистой системы в процессах адаптации к гипоксии
  11. Естественные антиоксиданты - антигипоксанты в адаптационной физиологии и медицине
  12. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ
  13. ЛИТЕРАТУРА
  14. РЕАКЦИИ ОРГАНИЗМА НА ГИПОКСИЮ
  15. Перинатальные поражения центральной нервной системы у новорожденных
  16. Роль антифосфолипидного синдрома и генетических форм тромбофилии в развитии акушерских осложнений.
  17. 1.3 Взаимосвязь изменений вегетативной нервной системы и патологии беременности
  18. I.1 Нарушения ритма серДца и провоДимости: распространённость, аспекты этиологии и патогенеза.
- Акушерство и гинекология - Анатомия - Андрология - Биология - Болезни уха, горла и носа - Валеология - Ветеринария - Внутренние болезни - Военно-полевая медицина - Восстановительная медицина - Гастроэнтерология и гепатология - Гематология - Геронтология, гериатрия - Гигиена и санэпидконтроль - Дерматология - Диетология - Здравоохранение - Иммунология и аллергология - Интенсивная терапия, анестезиология и реанимация - Инфекционные заболевания - Информационные технологии в медицине - История медицины - Кардиология - Клинические методы диагностики - Кожные и венерические болезни - Комплементарная медицина - Лучевая диагностика, лучевая терапия - Маммология - Медицина катастроф - Медицинская паразитология - Медицинская этика - Медицинские приборы - Медицинское право - Наследственные болезни - Неврология и нейрохирургия - Нефрология - Онкология - Организация системы здравоохранения - Оториноларингология - Офтальмология - Патофизиология - Педиатрия - Приборы медицинского назначения - Психиатрия - Психология - Пульмонология - Стоматология - Судебная медицина - Токсикология - Травматология - Фармакология и фармацевтика - Физиология - Фтизиатрия - Хирургия - Эмбриология и гистология - Эпидемиология -