Препараты, находящиеся на стадии клинических испытаний при РС
Клинические исследования новых методов патогенетического лечения РС проходят по ряду направлений: во-первых, это разработка препаратов более сильных, чем ИФНб, ГА и митосантрон, при хорошей переносимости (в основном моноклональные антитела); во вторых, разработка препаратов, более удобных в использовании (как правило иммуносупрессоров и противовоспалительных лекарственных средств в таблетированной форме), при хорошей переносимости.
Среди таблети- рованных препаратов, успешно проходящих клинические исследования II или III фазы, можно отметить Кладрибин (Mylinax®) - иммуносупрессор, аналог пуринового нуклеозида, действие которого направлено против определенных популяций лимфоцитов; Финголимод (Fingolimod (FTY720)) - представитель нового класса иммуномодуляторов - агонист рецептора сфингозин-1-фосфата (S1P) - ингибирует выход лимфоцитов из вторичных лимфоидных тканей и тимуса в кровь, также супрессирует активность фосфорилазы A2 (cPLA2), необходимой для синтеза медиаторов воспаления; Терифлуномид (Teriflunomide) - иммуномодулирующий препарат - ингибирует фермент дигидрооротат-дегидрогеназу и оказывает антипролиферативное действие; Лаквинимод (Laquinimod) - иммуномодулирующий препарат, подавляющий воспаление, демиелинизацию и повреждение аксонов при ЭАЭ, что может свидетельствовать о противовоспалительных и нейропротектив- ных свойствах препарата; BG-12 (Panaclar, BG-00012, FAG-201) - производное фумаровой кислоты, имеет цитопротективное и противовоспалительное действие (Lietal., 2004; O’Connor et al., 2006, 2009; Polman et al., 2005a; Leist, Vermersch, 2007; Wakkee, Thio, 2007). И, наконец, важным направлением является разработка более эффективных и имеющих меньше побочных реакций лекарственных форм известных препаратов, форм или их комбинации.Особое место занимает новый препарат MBP8298, представляющий собой синтетический пептид, состоящий из 17 аминокислот, идентичных участку 82-98 ОБМ человека.
В одном клиническом исследовании II фазы при ремиттирующем и двух исследованиях III фазы при вторично прогрессирующем РС было выявлено достоверное удлинение периода ремиссии у больных, несущихгаплотипы HLA-DR2 или DR4 (Warren et al., 2006).Таким образом, в патогенетическом лечении РС ПИТРС являются «препаратами первого выбора», пока не доказаны преимущества других методов лечения, но исследования активно продолжаются. Основная проблема современного этапа изучения РС - лечение нарастающего нейродегенеративного процесса. Это связано с тем, что только часть предполагаемых механизмов нейродегенерации при РС может быть напрямую связана с воспалением и аутоиммунными реакциями. Поэтому одно из перспективных современных направлений в разработке новых методов лечении этого заболевания связано с нейропротекцией - замедлением или, в оптимальном варианте, остановкой прогрессирования заболевания путем предотвращения дегенерации нервных клеток и аксонов или их восстановления. В связи с этим активно изучается антиапоптозный и иммуномодулирующий эффект нейротрофических факторов и стимуляторов их продукции, которые, возможно, в скором времени также станут объектом клинических испытаний при РС.
Литература
Алексеенков А.Д., Судомоина М.А., Бойко А.Н. и др. Анализ двух участков биаллельного полиморфизма в локусе фактора некроза опухолей у больных рассеянным склерозом из русской популяции:
связь с ПДРФ NcoI в первом интроне гена лимфотоксина а // Молекуляр. биология. 1999. Т. 33. С. 190-196.
Андреевский Т.В., СудомоинаМ.А., Бойко А.Н., Фаворова О.О. Генетика рассеянного склероза // Рассеянный склероз и другие демиелинизирующие заболевания. Ред. Е.И. Гусев, И.А. Завалишин, А.Н. Бойко. М.: Миклош, 2004. C. 43-45.
Бачева А.В., Белогуро А.А., Пономаренкои Н.А. и др. Анализ фрагментации основного белка миелина под действием протеасомы // Acta Naturae. 2009. №1. С. 86-89.
Бачева А.В., Белогуров А.А., Кузина Е.С. и др. Функциональная деградация основного белка миелина. Протеомный подход // Биоорганическая химия.
2011. №1. 39-47.Белогуров А.А., Пономаренко Н.А., Говорун В.М., Габибов А.Г., Бачева А.В. Сайт-специфическая деградация основного белка миелина протеасомой // Докл. РАН. 2009. Т 425. № 2. С. 251-255.
Бойко А.Н., Давыдовская М.В., Демина Т.Л. и др. Опыт длительного использования Бетаферона и Копаксона в повседневной практике неврологов - результаты 5-летнего лечения больных рассеянным склерозом в Московском городском центре рассеянного склероза // Журнал неврол. психиатр. Спец. выпуск: Рассеянный склероз. 2007. № 4. С. 84-94.
Гусев Е.И. Современные диагностические критерии рассеянного склероза // Рассеянный склероз и другие демиелинизирующие заболевания. Ред. Е.И. Гусев, И.А. Завалишин, А.Н. Бойко. М.: Миклош, 2004. С. 252-261.
Гусев Е.И., Бойко А.Н. Демиелинизирующие заболевания центральной нервной системы // Consilium medicum. 2000. Т. 2. № 2. С. 84-86.
Гусев Е.И., Бойко А.Н. Рассеянный склероз: от изучения иммунопатогенеза к новым методам лечения. М.: Губернская медицина, 2001. 128 с.
Гусев Е.И, Бойко А.Н. Рассеянный склероз: достижения десятилетия // Журнал неврол. психиатр. Спец. выпуск: Рассеянный склероз. 2007. № 4. С. 4-13.
Гусев Е.И., Бойко А.Н., Сланова А.В., Нестерова В.А. Новые данные о механизмах действия копак- сона при рассеянном склерозе: у ряда больных отмечено существенное усиление продукции нейротрофического фактора BDNF // Материалы XI Всеросс. науч. конф. «Нейроиммунология». СПб., 2002. С. 78-79.
Гусев Е.И., Бойко А.Н., Завалишин И.А., Быкова О.В. Современная эпидемиология рассеянного склероза // Рассеянный склероз и другие демиелинизирующие заболевания. Ред. Е.И. Гусев, И.А. Завалишин, А.Н. Бойко. М.: Миклош, 2004a. С. 8-29.
Гусев Е.И., Бойко А.Н., Силуянова В.А. и др. Варианты течения и прогноз при рассеянном склерозе // Рассеянный склероз и другие демиелинизирующие заболевания. Ред. Е.И. Гусев, И.А. Завалишин, А.Н. Бойко. М.: Миклош, 2004б. С. 158-180.
Докучаева Н.Н., Бойко А.Н. Клинико-эпидемиологическое исследование рассеянного склероза в Волгограде // Журнал неврол.
психиатр. Спец. выпуск: Рассеянный склероз. 2006. № 3. С. 4-10.Завалишин И.А., Захарова М.Н. Рассеянный склероз: основные аспекты петогенеза // Рассеянный склероз и другие демиелинизирующие заболевания. Ред. Е.И. Гусев, И.А.Завалишин, А.Н.Бойко. М.: Миклош, 2004. С. 60-75.
Завалишин И.А., Переседова А.В., Стойда Н.И. и др. Сравнительный анализ эффективности реби- фа-22 мкг и копаксона при рассеянном склерозе // Журнал неврол. и псих. Спец. выпуск: Рассеянный склероз. 2006. №3. С. 111-115.
Заргарова Т.А., Фаворова О.О. Экспериментальный аллергический энцефаломиелит - модель рассеянного склероза // Иммунология. 1999. № 2. С. 5-8.
Кондратьева О.С., Исмаилов М.Ф., Матвеева Т.В., Саитгалеев И.З. К эпидемиологии рассеянного склероза на территории Республики Татарстан // Неврологический вестник. 2002. № 3-4. С. 4-12.
Кузина Е.С., Черноловская Е.Л., Кудряева А.А. и др. Ускорение внутриклеточного протеолиза основного белка миелина иммунопротеасомой // Докл. РАН. 2013. Вып. 453. № 4. С. 446-449.
Спирин Н.Н., Качура Д.А., Качура А.Н., Бойко А.Н. Влияние экологических факторов на заболеваемость и распространенность рассеянного склероза // Журнал неврол. психиаьр. Спец. выпуск: Рассеянный склероз. 2003. № 2. С. 111-113.
СудомоинаМ.А., Фаворова О.О. Поиск генов предрасположенности к рассеянному склерозу // Молекуляр. биология. 2000. Т 34. С. 654-670.
Чехонин В.П., Гурина О.И. и др. Основной белок миелина. Строение, свойства, функции, роль в диагностике димиелинизирующих заболеваний // Вопросы медецинской химии. 2000. Вып. 6. С. 10-27.
Abdeen H., Heggarty S., Hawkins S.A. et al. Mapping candidate non-MHC susceptibility regions to multiple sclerosis // Genes Immun. 2006. Vol. 7. P. 494-502.
Acosta-Rodriguez E.V., Napolitani G., Lanzavecchia A., Sallusto F. Interleukins lbeta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells // Nat. Immunol. 2007. Vol. 8. P. 942-949.
Afzali B.,Lombardi G., Lechler R.I., Lord G.M.
The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease // Clin. Exp. Immunol. 2007. Vol. 148. P. 32-46.Alam R., Gorska M. Lymphocytes // J. Allergy Clin. Immunol. 2003. Vol. 11. P. S476-485.
Alizadeh M., Babron M.C., Birebent B. et al. Genetic interaction of CTLA-4 with HLA-DR15 in multiple sclerosis patients // Ann. Neurol. 2003. Vol. 54. P. 119-122.
Allen I.V., McQuaid S., Mirakhur M., Nevin G. Pathological abnormalities in the normal-appearing white matter in multiple sclerosis // Neurol. Sci. 2001. Vol. 22. P.141-144.
Amato M.P. Pharmacoeconomic considerations of multiple sclerosis therapy with the new disease-modifying agents // Exp. Opin. Pharmacother.2004. Vol. 5. P. 2115-2126.
Amirzargar A., Khosravi F., Dianat S. et al. Profile of cytokine gene polymorphisms in Iranian multiple sclerosis patients // Mult. Scler.2007. Vol. 13. P. 253-255.
Amur S.G., Shanker G. et al. Regulation of myelin basic protein (arginine) methyltransferase by thyroid hormone in myelinogenic cultures of cells dissociated from embryonic mouse brain // J. Neurochem. 1984. Vol. 43. P. 494-8.
Angelucci F., Batocchi A.P., Caggiula M. et al. In vivo effects of mitoxantrone on the production of pro- and anti-inflammatory cytokines by peripheral blood mononuclear cells of secondary progressive multiple sclerosis patients // Neuroimmunomodulation. 2006. Vol. 13. P. 76-81.
Antel J. Oligodendrocyte susceptability to immune-mediated injury // Multiple sclerosis. Tissue Destraction and Repair. Eds. L. Kappos, J. Kesselring, E.W. Radu, K. Johnson, Dunitz M. 2001. P. 11-24.
Antel J. P., Bar-Or А. Do myelin-directed antibodies predict multiple sclerosis? // N. Engl. J. Med. 2003. Vol. 349. P. 107-9.
Aranami T.,Yamamura T. Th17 Cells and Autoimmune Encephalomyelitis (EAE/MS) // Allergol. Int. 2008. Vol. 57. P. 115-120.
Arnon R. The development of Cop 1 (Copaxone), an innovative drug for the treatment of multiple sclerosis: personal reflections // Immunol.
Lett.1996. Vol. 50. P. 1-15.Arnon R., Aharoni R. Neurogenesis and neuroprotection in the CNS - fundamental elements in the effect of Glatiramer acetate on treatment of autoimmune neurological disorders // Mol. Neurobiol. 2007. Vol. 36. P. 245-253.
Babbe H., Roers A., Waisman A. et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction // J. Exp. Med. 2000. Vol. 192. P. 393-404.
Ballerini C., Rosati E., Salvetti M. et al. Protein tyrosine phosphatase receptor-type C exon 4 gene mutation distribution in an Italian multiple sclerosis population // Neurosci. Lett. 2002. Vol. 328. P. 325-327.
Baranzini S.E., Jeong M.C. et al. B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions // J. Immunol. 1999. Vol. 163. P. 5133-44.
Barcellos L.F., Thomson G., Carrington M. et al. Chromosome 19 single-locus and multilocus haplotype associations with multiple sclerosis. Evidence of a new susceptibility locus in Caucasian and Chinese patients // JAMA. 1997. Vol. 278. P. 1282-1283.
Barkhof F., Filippi M., Miller D.H. et al. Comparison of MR imaging criteria at first presentation to predict conversion to clinically definite multiple sclerosis // Brain. 1997. Vol. 120. P. 2059-2069.
Beall S.S., Concannon P., Charmley P. et al. The germline repertoire of T cell receptor beta-chain genes in patients with chronic progressive multiple sclerosis // J. Neuroimmunol. 1989. Vol. 21. P. 59-66.
Beall S.S., Biddison W.E., McFarlin D.E. et al. Susceptibility for multiple sclerosis is determined, in part, by inheritance of a 175-kb region of the TcR V beta chain locus and HLA class II genes // J. Neuroimmunol. 1993. Vol. 45. P. 53-60.
Becher B., Durell B.G., Noelle R.J. Experimental autoimmune encephalitis and inflammation in the absence of interleukin-12 // Clin. Invest. 2002. Vol. 110. P. 493-497.
Bechtold D.A., Smith K.J. Sodium-mediated axonal degeneration in inflammatory demyelinating disease // J. Neurol. Sci. 2005. Vol. 233. P. 27-35.
Belogurov A.A. Jr., Kurkova IN. et al. Recognition and degradation of myelin basic protein peptides by serum autoantibodies: novel biomarker for multiple sclerosis // J. Immunol. 2008. Vol. 180. P. 1258-1267.
Belogurov A. Jr., Kozyr A., Ponomarenko N., Gabibov A. Catalytic antibodies: balancing between Dr. Jekyll and Mr. Hyde // Bioessays. 2009a. Vol. 31. № 11. P. 1161-1171.
Belogurov A. Jr., Zargarova T.A,, Turobov V.I. et al. Suppression of ongoing experimental allergic encephalomyelitis in DA rats by novel peptide drug, structural part of human myelin basic protein 46-62 // Autoimmunity. 2009b. Vol. 42. № 4. P. 362-364.
Belogurov A. Jr., Smirnov I., Ponomarenko N., Gabibov A. Antibody-antigen pair probed by combinatorial approach and rational design: bringing together structural insights, directed evolution, and novel functionality // FEBS Lett. 2012. Vol. 586. № 18. P 2966-2973.
Belogurov A.A. Jr., Stepanov A.V., Smirnov I.V et al. Liposome-encapsulated peptides protect against experimental allergic encephalitis // FASEB J. 2013. Vol. 27. № 1. P. 222-231.
Belogurov A. Jr., Kudriaeva A., Kuzina E. et al. Multiple sclerosis autoantigen mMyelin basic protein escapes control by ubiquitination during proteasomal degradation // J. Biol. Chem. 2014. Vol. 289. № 25. P 17758-17766.
Beniac D. R., Wood D.D. et al. Cryoelectron microscopy of protein-lipid complexes of human myelin basic protein charge isomers differing in degree of citrullination // J. Struct. Biol. 2000. Vol. 129. P. 80-95.
Berger T., P. Rubner, et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event // N. Engl. J. Med. 2003. Vol. 349. P 139-45.
Bergers E., Bot J.C.J, De Groot C.J.A. et al. Axonal damage in the spinal cord of MS patients occurs largely independent on T2 MRI // Neurology. 2002. Vol. 59. P 1766-1771.
Bettelli E., Carrier Y., Gao W. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells // Nature. 2006. Vol. 441. P 235-238.
Bielekova B., Richert N., Howard T. et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta // Proc. Natl. Acad. Sci. USA. 2004. Vol. 101. P 8705-8708.
Billiau A., Kieseier B., HartungH-P. Biologic role of interferon beta in multiple sclerosis // J. Neurol. 2004. Vol. 251. Suppl. 2. P 10-14.
Bischof F., BinsA. et al. A structurally available encephalitogenic epitope of myelin oligodendrocyte glycoprotein specifically induces a diversified pathogenic autoimmune response // J. Immunol. 2004. Vol. 173. P 600-606.
Bjartmar C., Wujek J.R., TrappB.D. Axonal loss in the pathology of MS: consequences for understanding the progressive phase of the disease // Neurol. Science. 2003. Vol. 206. P 165-171.
Boiko A.N., Kesselring J., Paty D.W. et al. Multiple sclerosis and public health. Educational and management implications // Neuroscience and Neurological Disorders. World Health Organization, Department of Mental Health, 1999. Vol. 2. P 1-11.
Boiko A.N., Guseva M.E., Guseva M.R. et al. Clinico-immunogenetic characteristics of multiple sclerosis with optic neuritis in children // J. Neurovirol. 2000. Suppl. 2. P S152-155.
Bomprezzi R., Kovanen P.E., Martin R. New approaches to investigating heterogeneity in complex traits // J. Med. Genet. 2003 Vol. 40. P 553-559.
Booth D.R., Arthur A.T., Teutsch S.M. et al. The Southern MS Genetics Consortium. Gene expression and ge- notyping studies implicate the interleukin 7 receptor in the pathogenesis of primary progressive multiple sclerosis // J. Mol. Med. 2005. Vol. 83. P 822-830.
Boven L.A., Montagne L., NottetH.S., DeGroot C.J. Macrophage inflammatory protein-1a (MIP-1a), MIP-1 and RANTES mRNA semiquantification and protein expression in active demyelinating multiple sclerosis (MS) lesions // Clin. Exp. Immunol. 2000. Vol. 122. P 257-263.
Brassat D., Motsinger A.A., Caillier S.J. et al. Multifactor dimensionality reduction reveals gene-gene interactions associated with multiple sclerosis susceptibility in African Americans // Genes Immun. 2006. Vol. 7. P 310-315.
Brisebois M., Zehntner S.P., Estrada J. et al. A pathogenic role for CD8+ T cells in a spontaneous model of demyelinating disease // J. Immunol. 2006. Vol. 177. P. 2403-2411.
Bruck W. The pathology of multiple sclerosis is the result of focal inflammatory demyelination with axonal damage // J. Neurol. 2005. Vol.252. Suppl. 5. P. v3-9.
Buhler M.M., Bennetts B.H., Heard R.N., Stewart G.J. T cell receptor beta chain genotyping in Australian relapsing-remitting multiple sclerosis patients // Mult. Scler. 2000. Vol. 6. P. 140-147.
Buttmann M., Rieckmann P. Interferon-beta 1b in multiple sclerosis // Expert. Rev. Neurother. 2007. Vol. 7. P. 227-239.
Buttmann M., Rieckmann P. Treating multiple sclerosis with monoclonal antibodies // Expert. Rev. Neu- rother. 2008. Vol. 8. P. 433-455.
Carlson N.G., Rose J.W. Antioxidants in multiple sclerosis: do they have a role in therapy? // CNS Drugs. 2006. Vol. 20. P. 433-441.
Chaudhuri A., Behan P.O. Rituximab in relapsing-remitting multiple sclerosis // N. Engl. J. Med. 2008. Vol. 358. P. 2646.
Chiocchetti A., Comi C., Indelicato M. et al. Osteopontin gene haplotypes correlate with multiple sclerosis development and progression // J. Neuroimmunol. 2005. Vol. 163. P. 172-178.
Chofflon M. Mechanisms of action for treatments in multiple sclerosis. Does a heterogeneous disease demand a multi-targeted therapeutic approach? // Biodrugs. 2005. Vol. 19. P. 299-308.
Colombo M., Dono M. et al. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients // J. Immunol. 2000. Vol. 164. P. 2782-9.
Compston D.A.S., Sadovnick A.D. Epidemiology and genetics of multiple sclerosis // Curr. Opin. Neurol. Neurosurg. 1992. Vol. 5. P. 175-181.
Cournu-Rebeix I., Genin E., Lesca G. et al. Intercellular adhesion molecule-1: a protective haplotype against multiple sclerosis // Genes Immun. 2003. Vol. 4. P. 518-523.
Crawford M.P., Yan S.X., Ortega S.B. et al. High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay // Blood. 2004. Vol. 103. P. 42224231.
Cree B. Emerging monoclonal antibody therapies for multiple sclerosis // Neurologist. 2006. Vol. 12. P. 171178.
Cua D.J., Sherlock J., Chen Y. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain // Nature. Vol. 421. P. 744-748.
Cunningham S., Patterson C.C., McDonnell G. et al. Haplotype analysis of the preprotachykinin-1 (TAC1) gene in multiple sclerosis // Genes Immun. 2005. Vol. 6. P. 265-270.
Dai K.Z., Harbo H.F., Celius E.G. et al. The T cell regulator gene SH2D2A contributes to the genetic susceptibility of multiple sclerosis // Genes Immun. 2001. Vol. 2. № 5. P. 263-268.
D’Alfonso S., Bolognesi E., Guerini F.R. et al. A sequence variation in the MOG gene is involved in multiple sclerosis susceptibility in Italy // Genes Immun. 2008. Vol. 9. P. 7-15.
De Jong B.A., Huizinga T. W., Zanelli E. et al. Evidence for additional genetic risk indicators of relapse-onset MS within the HLA region // Neurology. 2002. Vol. 59. P. 549-555.
De la Concha E.G., Arroyo R., Crusius J.B. et al. Combined effect of HLA-DRB1*1501 and interleukin-1 receptor antagonist gene allele 2 in susceptibility to relapsing/remitting multiple sclerosis // J. Neuroim- munol. 1997. Vol. 80. P. 172-178.
Dincic E., Zivkovic M., Stankovic A. et al. Association of polymorphisms in CTLA-4, IL-1ra and IL-1beta genes with multiple sclerosis in Serbian population // J. Neuroimmunol. 2006. Vol. 177. P. 146-50.
Dore-Duffy P., Washington R., Dragovic L. Expression of endothelial cell activation antigens in microvessels from patients with multiple sclerosis // Adv. Exp. Med. Biol. 1993. Vol. 331. P. 243-248.
DSouza C.A., Moscarello M.A. Differences in susceptibility of MBP charge isomers to digestion by strome- lysin-1 (MMP-3) and release of an immunodominant epitope // Neurochem. Res. 2006. Vol. 31. P. 1045-1054.
D’Souza C.A., Wood D.D. et al. Autocatalytic cleavage of myelin basic protein: an alternative to molecular mimicry // Biochemistry. 2005. Vol. 44. P. 12905-13.
Dyment D.A., Ebers G.C., Sadovnick A.D. Genetics of multiple sclerosis // Lancet Neurol. 2004. Vol. 3. P. 104-110.
DymentD.A., Yee IM., Ebers G.C., SadovnickA.D. Canadian Collaborative Study Group. Multiple sclerosis in stepsiblings: recurrence risk and ascertainment // J. Neurol. Neurosurg. Psychiatry.2006. Vol. 77. P. 258-259.
Ebers G. Prognostic factors for multiple sclerosis: the importance of natural history studies // J. Neurol. 2005. Suppl. 252. P 15-20.
Edan G., Miller D., ClarnetM. et al. Therapeutic effect of mitoxantrone combined with methilprednisolone in multiple sclerosis: a randomized multicentre study of active disease using MRI and clinical criteria // J. Neurol. Neurosurg. Psychiatry. 1997. Vol. 62. P 112-118.
Egg, R., Reindl M. et al. Anti-MOG and anti-MBP antibody subclasses in multiple sclerosis // Mult. Scler. 2001. Vol. 7. P 285-9.
ElicesM.J. Natalizumab // Curr. Opin. Investig. Drugs. 2003. Vol. 4. P 1354-1362.
Epplen C., Buitkamp J., Rumpf H. et al. Immunoprinting reveals different genetic bases for (auto)immuno diseases // Electrophoresis. 1995. Vol. 16. P. 1693-1697.
Epplen C., Jackel S., Santos E.J. et al. Genetic predisposition to multiple sclerosis as revealed by immuno- printing // Neurol. 1997. Vol. 41. P 341-352.
FarralM. Mapping genetic susceptibility to multiple sclerosis // Lancet. 1996. Vol. 348. P 1674-1675.
Favorov A.V., Andreewski T. V., Sudomoina M.A. et al. A Markov chain Monte Carlo technique for identification of combinations of allelic variants underlying complex diseases in humans // Genetics. 2005. Vol. 171. P 2113-2121.
Favorova O.O., Andreewski T.V., Boiko A.N. et al. The chemokine receptor CCR5 deletion mutation is associated with MS in HLA-DR4-positive Russians // Neurology. 2002. Vol. 59. P 1652-1655.
Favorova O.O., Favorov A.V., Boiko A.N. et al. Three allele combinations associated with multiple sclerosis // BMC Med. Genet. 2006. Vol. 7. P 63-70.
Fernald G.H., Yeh R.F., Hauser S.L. et al. Mapping gene activity in complex disorders: integration of expression and genomic scans for multiple sclerosis // J. Neuroimmunol. 2005. Vol. 167. P 157-169.
Fernandes Filho J.A., Vedeler C.A., Myhr K.M. et al. TNF-alpha and -beta gene polymorphisms in multiple sclerosis: a highly significant role for determinants in the first intron of the TNF-beta gene // Autoimmunity. 2002. Vol. 35. P. 377-380.
Fernandez-Arquero M., Arroyo R., Rubio A. et al. Primary association of a TNF gene polymorphism with susceptibility to multiple sclerosis // Neurol. 1999. Vol. 53. P 1361-1363.
Fisher E., RudickR.A., Simon J.H. et al. Eight-year follow-up study of brain atrophy in patients with MS // Neurology. 2002. Vol. 59. P 1412-1420.
Fox E.J. Mechanism of action of mitoxantrone // Neurology. 2004. Vol. 63. Suppl. 6. P S15-S18.
Freedman M.S., Hughes B., Mikol D.D. et al. Efficacy of Disease-Modifying Therapies in Relapsing Remitting Multiple Sclerosis: A Systematic Comparison // Eur. Neurol. 2008. Vol. 60. P 1-11.
Fukazawa T., Yabe I., Kikuchi S. et al. Association of vitamin D receptor gene polymorphism with multiple sclerosis in Japanese // J. Neurol. Sci. 1999. Vol. 166. P 47-52.
Gabibov A.G., Belogurov A.A. Jr, Lomakin Y.A. et al. Combinatorial antibody library from multiple sclerosis patients reveals antibodies that cross-react with myelin basic protein and EBV antigen // FASEB J. 2011 Vol. 25. № 12. P 4211-21.
Gade-Andavolu R, Comings D.E., MacMurray J. et al. RANTES: a genetic risk marker for multiple sclerosis // Mult. Scler. 2004. Vol. 10. P 536-539.
GAMES, T.M.S.G. Cooperative. A meta-analysis of whole genome linkage screens in multiple sclerosis // J. Neuroimmunol. 2003. Vol. 143. P 39-46.
Gerritse, K., Deen C. et al. The involvement of specific anti myelin basic protein antibody-forming cells in multiple sclerosis immunopathology // J. Neuroimmunol. 1994. Vol. 49. P 153-159.
Gomez-Lira M., Liguori M., Magnani C. et al. CD45 and multiple sclerosis: the exon 4 C77G polymorphism (additional studies and meta-analysis) and new markers // J. Neuroimmunol. 2003. Vol. 140. P 216-221.
Goris A., Epplen C., Fiten P. et al. Analysis of an IFN-gamma gene (IFNG) polymorphism in multiple sclerosis in Europe: effect of population structure on association with disease // J. Interferon Cytokine Res. 1999. Vol. 19. P 1037-1046.
Green A.J., Barcellos L.F., Rimmler J.B. et al. Sequence variation in the transforming growth factor-beta1 (TGFB1) gene and multiple sclerosis susceptibility // J. Neuroimmunol. 2001. Vol. 116. P 116-124.
Gregersen J.W., Kranc K.R., Ke X. et al. Functional epistasis on a common MHC haplotype associated with multiple sclerosis // Nature. 2006. Vol. 443. P. 574-577.
Gregory S.G., Schmidt S., Seth P. et al. Multiple Sclerosis Genetics Group. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis // Nat. Genet. 2007. Vol. 39. P. 1083-1091.
Guerini F.R., Ferrante P., Losciale L. et al. Myelin basic protein gene is associated with MS in DR4- and DR5-positive Italians and Russians // Neurology. 2003. Vol. 61. P. 520-526.
Haahr S., HollsbergP. Multiple sclerosis is linked to Epstein-Barr virus infections // Rev. Med. Virol. 2006. Vol. 16. P. 297-310.
Hafler, D.A. Multiple sclerosis // J. Clin. Invest. 2004. Vol. 113. P. 788-794.
Hafler, D.A., Slavik J.M. et al. Multiple sclerosis // Immunol. Rev. 2005. Vol. 204. P. 208-31.
Haines J.L., Terwedow H.A., Burgess K. et al. Linkage of the MHC to familial multiple sclerosis suggests genetic heterogeneity // Hum. Mol. Genet. 1998. Vol. 7. P. 1229-1234.
Harbo H.F., Celius E.G., Vartdal F., Spurkland A. CTLA4 promoter and exon 1 dimorphisms in multiple sclerosis // Tissue Antigens. 1999. Vol. 53. P. 106-110.
Harrington L.E., Mangan P.R., Weaver C.T. Expanding the effector CD4 T-cell repertoire: the Th17 lineage // Curr Opin. Immunol. 2006. Vol. 18. P. 349-256.
Hartung H.P., Gonsette R., Konig N. et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomized multicentre trial // Lancet. 2002. Vol. 360. P. 2018-2025.
Hebb A.L., Moore C.S., Bhan V. et al. Expression of the inhibitor of apoptosis protein family in multiple sclerosis reveals a potential immunomodulatory role during autoimmune mediated demyelination // Mult. Scler 2008. Vol. 14. P. 577-594.
Herrera B.M., Ebers G.C. Progress in deciphering the genetics of multiple sclerosis // Curr. Opin. Neurol. 2003. Vol. 16. P. 253-258.
Hilton A.A., Slavin A.J., Hilton D.J., Bernard C.C. Characterization of cDNA and genomic clones encoding human myelin oligodendrocyte glycoprotein // J. Neurochem. 1995. Vol. 65. P. 309-318.
Hogh P., Oturai A., Schreiber K. et al. Apoliprotein E and multiple sclerosis: impact of the epsilon-4 allele on susceptibility, clinical type and progression rate // Mult. Scler. 2000. Vol. 6. P. 226-230.
Hohlfeld R. Neurotrophic cross-talk between the nervous and immune systems: relevance for repair strategies in multiple sclerosis? // J. Neurol. Sci. 2008. Vol. 265. P. 93-96.
Husted C. Structural insight into the role of myelin basic protein in multiple sclerosis // Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. P. 4339-4340.
Hutchinson M. Natalizumab: A new treatment for relapsing remitting multiple sclerosis // Ther. Clin.Risk. Manag. 2007. Vol. 3. P 259-268.
Ibsen S.N., Clausen J. A repetitive DNA sequence 5’ to the human myelin basic protein gene may be linked to MS in Danes // Acta Neurol. Scand. 1996. Vol. 93. P. 236-240.
International Multiple Sclerosis Genetics Consortium. Risk alleles for multiple sclerosis identified by a genomewide study // N. Engl. J. Med. 2007. Vol. 357. P. 851-862.
Jacobs L.D., Cookfair D.L., Rudick R.A. et al. Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG) // Ann. Neurol. 1996. Vol. 39. P. 285-294.
Jensen J., KrakauerM., SellebjergF. Cytokines and adhesion molecules in multiple sclerosis patients treated with interferon-beta 1b // Cytokine. 2005. Vol. 7. P. 24-30.
Ji Q., Goverman J. Experimental autoimmune encephalomyelitis mediated by CD8+ T cells // Ann. NY Acad. Sci. 2007. Vol. 1103. P. 157-166.
Johnson K.P. Natalizumab (Tysabri) treatment for relapsing multiple sclerosis // Neurologist. 2007. Vol. 13. P. 182-187.
Johnson K.P., Brooks B.R., Cohen J.A. et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a Phase III multicenter, double-blind placebo-controlled trial // Neurology. 1995. Vol. 45. P. 1268-1276.
Johnson K.P., Brooks B.R., Cohen J.A. et al. Extended use of glatiramer acetate (Copaxone) is well tolerated and maintains its clinical effect on multiple sclerosis relapse rate and degree of disability. Copolymer 1 Multiple Sclerosis Study Group // Neurol. 1998. Vol. 50. P. 701-708.
Kantarci O.H., Hebrink D.D., Achenbach S.J. et al. CTLA4 is associated with susceptibility to multiple sclerosis // J. Neuroimmunol. 2003a. Vol. 134. P. 133-141.
Kantarci O.H., Schaefer-Klein J.L., Hebrink D.D. et al. A population-based study of IL4 polymorphisms in multiple sclerosis // J. Neuroimmunol. 2003b. Vol. 137. P. 134-139.
Kantarci O.H., Hebrink D.D., Achenbach S.J. et al. CD95 polymorphisms are associated with susceptibility to MS in women. A population-based study of CD95 and CD95L in MS // J. Neuroimmunol. 2004. Vol. 146. P. 162-170.
Kantarci O.H., Goris A., HebrinkD.D. et al. IFNG polymorphisms are associated with gender differences in susceptibility to multiple sclerosis // Genes Immun. 2005. Vol. 6. P. 153-161.
Kaplan A.P. Chemokines, chemokine receptors and allergy // Int. Arch. Allergy Immunol. 2001. Vol. 124. P. 423-431.
Kappos L., Polman C.H., Freedman M.S. et al. Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes // Neurol. 2006a. Vol. 67. P. 1242-1249.
Kappos L., Traboulsee A., Constantinescu C. et al. Long-term subcutaneous interferon beta-1a therapy in patients with relapsing-remitting MS // Neurol. 2006b. Vol. 67. P. 944-953.
Kappos L., Bates D., Hartung H.P. et al. Natalizumab treatment for multiple sclerosis: recommendations for patient selection and monitoring // Lancet Neurol. 2007. Vol. 6. P. 431-441.
Kebir H., Kreymborg K., Ifergan I. et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation // Nat. Med. 2007. Vol. 13.P. 1173-1175.
KiddP. Th1/Th2 Balance: The Hipothesis, its Limitations, and Implications for Health and Disease // Altern. Med. Rev. 2003.Vol. 8. P 223-246.
Kieseier B.C., Hemmer B., Hartung H.P. Multiple sclerosis--novel insights and new therapeutic strategies // Curr Opin.Neurol. 2005. Vol. 18. P. 211-220.
Kikly K., Liu L., Na S., Sedgwick J.D. The IL-23/Th(17) axis: therapeutic targets for autoimmune inflammation // Curr. Opin. Immunol. 2006. Vol. 18. P. 670-675.
Kikuchi S., Fukazawa T., Niino M. et al. Estrogen receptor gene polymorphism and multiple sclerosis in Japanese patients: interaction with HLA-DRB1*1501 and disease modulation // J. Neuroimmunol. 2002. Vol. 128. P. 77-81.
Kinkel R.P., Kollman C., O'Connor P. et al. IM interferon beta-1a delays definite multiple sclerosis 5 years after a first demyelinating event // Neurol. 2006. Vol. 66. P. 678-684.
Kirk C.W., Droogan A.G., Hawkins S.A. et al. Tumor necrosis factor micro satellites show association with multiple sclerosis // J. Neurol. Sci. 1997. Vol. 147. P. 21-25.
Kishimoto A., K. Nishiyama, et al. Studies on the phosphorylation of myelin basic protein by protein kinase C and adenosine 3’:5’-monophosphate-dependent protein kinase // J. Biol. Chem. 1985. Vol. 260. P. 12492-12499.
Kleinschmidt-DeMasters B.K., Tyler K.L. Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis // N. Engl. J. Med. 2005. Vol. 353. P. 369-374.
Kolls J K., Linden A. Interleukin-17 family members and inflammation // Immunity. 2004. Vol. 21. P 467476.
Kopadze T., Dehmel T., Hartung H.P. et al. Inhibition by mitoxantrone of in vitro migration of immunocompetent cells: a possible mechanism for therapeutic efficacy in the treatment of multiple sclerosis // Arch. Neurol. 2006. Vol. 63. P 1572-1578.
KornekB., Lassmann H. Neurophatology of multiple sclerosis // Brain Res. Bull. 2003. Vol. 61. P 321-326.
Kovarik P., Sauer I., Schaljo B. Molecular mechanisms of the anti-inflammatory functions of interferons // Immunobiology. 2007. Vol. 212. P. 895-901.
Kreutzberg G.W. Microglia: a sensor for pathological events in the CNS // Trends Neurosci. 1996. Vol. 19. P. 312-318.
Kuhle J., Lindberg R.L. et al. Antimyelin antibodies in clinically isolated syndromes correlate with inflammation in MRI and CSF // J. Neurol. 2007a. Vol. 254. P 160-168.
Kuhle J., Pohl C. et al. Lack of association between antimyelin antibodies and progression to multiple sclerosis // N. Engl. J. Med. 2007b. Vol. 356. P 371-8.
Langer-Gould A., Steinman L. Progressive multifocal leukoencephalopathy and multiple sclerosis: lessons from natalizumab // Curr. Neurol. Neurosci. Rep. 2006.Vol. 6. P. 253-258.
Langrish C.L., Chen Y., Blumenschein W.M. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation // J. Exp. Med. 2005. Vol. 201. P. 233-40.
Leist T.P., Vermersch P. The potential role for cladribine in the treatment of multiple sclerosis: clinical experience and development of an oral tablet formulation // Curr. Med. Res. Opin. 2007. Vol. 23. P. 2667-2676.
Levine S.M., Chakrabarty A. The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis // Ann. NY Acad. Sci. 2004. Vol. 1012. P. 252-266.
Li D.K., O’Conner P., Freedman M. et al. Oral teriflunomide is safe and effective in multiple sclerosis with relapses: results of a randomised, placebo-controlled Phase II study // Mult. Scler. 2004. Vol. 10. Suppl. 2. P. P685.
Li Y., Chu N., Hu A. et al. Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia // Brain. 2007. Vol. 130. P. 490-501.
Libich, D.S., Hill C.M., et al. Myelin basic protein has multiple calmodulin-binding sites // Biochem. Bio- phys. Res. Commun. 2003. Vol. 308. P. 313-319.
Ligers A., Xu C., Saarinen S. et al. The CTLA-4 gene is associated with multiple sclerosis // J. Neuroimmu- nol. 1999. Vol. 97. P. 182-190.
Lock C., Hermans G., Pedotti R. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis // Nat. Med. 2002. Vol. 8. P. 500-508.
Lomakin Y.A., Zakharova M.Y., Belogurov A.A. et al. Polyreactive monoclonal autoantibodies in multiple sclerosis: functional selection from phage display library and characterization by deep sequencing analysis // Acta Naturae. 2013, Vol. 5. № 4. P. 94-104.
Lomakin Y.A., Zakharova M.Y., Stepanov A.V et al. Heavy-light chain interrelations of MS-associated immunoglobulins probed by deep sequencing and rational variation // Mol. Immunol. 2014. S0161- 5890(14)00023-6.doi: 10.1016/j.molimm.2014.01.013
Lorentzen A.R., Smestad C., Lie B.A. et al. The SH2D2A gene and susceptibility to multiple sclerosis // J. Neuroimmunol. 2008. Vol. 197. № 2. P 152-158.
Lovrecic L., Ristic S., Starcevic-Cizmarevic N. et al. PAI and TPA gene polymorphisms in multiple sclerosis // Mult. Scler. 2008. Vol. 14. P 243-247.
Lucas M., Zayas M.D., De Costa A.F. et al. A study of promoter and intronic markers of ApoI/Fas gene and the interaction with Fas ligand in relapsing multiple sclerosis // Eur. Neurol. 2004. Vol. 52. P 12-17.
Lucchinetti C., Bruck W., Parisi J. et al. Heterogeneity of multiple sclerosis lesions: Implication for the pathogenesis of demielinination // Ann. Neurol. 2000. Vol. 47. P. 707-717.
Ludewig B., Junt T., Hengartner H. et al. Dendritic cells in autoimmune diseases // Curr. Opin. Immunol. 2001. Vol. 13. P 657-662.
Lundmark F., Duvefelt K., Iacobaeus E. et al. Variation in interleukin 7 receptor alpha chain (IL7R) influences risk of multiple sclerosis // Nat. Genet. 2007. Vol. 39. P 1108-1113.
Lundry J., Craig B.M. The use of disease-modifying agents among multiple sclerosis patients enrolled in medicare from 1995 to 2002 and the impact of medicare // Clin. Ther. 2006. Vol. 28. P 140-145.
Luomala M., Elovaara .I, Ukkonen M. et al. Plasminogen activator inhibitor 1 gene and risk of MS in women // Neurology. 2000. Vol. 54. P 1862-1864.
Lyons, J. A., SanM., et al. B cells are critical to induction of experimental allergic encephalomyelitis by protein but not by a short encephalitogenic peptide // Eur. J. Immunol. 1999. Vol. 29. P. 3432-9.
Macciardi F., Boneschi FM., Cohen D. Pharmacogenetics of autoimmune diseases: research issues in the case of Multiple Sclerosis and the role of IFN-beta // J. Autoimmun. 2005. Vol. 25. P 1-5.
Madsen L.S., Andersson E.C., Jansson L. et al. A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor // Nat. Genet. 1999. Vol. 23. P 343-347.
Maeda A., Sobel R.A. Matrix metalloproteinases in the normal human central nervous system, microglial nodules and MS lesions // Neuropathol. Exp. Neurol. 1996. Vol. 55. P. 300-309.
Manel N., Unutmaz D., Littman D.R. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat // Nat. Immunol. 2008. Vol. 9. P. 641-649.
Martinez A., Rubio A., Urcelay E. et al. TNF-376A marks susceptibility to MS in the Spanish population: A replication study // Neurology. 2004. Vol. 62. P. 809-810.
Martinez Doncel A., Rubio A., Arroyo R. et al. Interleukin-10 polymorphisms in Spanish multiple sclerosis patients // J. Neuroimmunol. 2002. Vol. 131. P. 168-172.
Martmez-Naves E., Victoria-Gutierrez M., Una D.F., Lopez-Larrea C. The germline repertoire of T cell receptor beta-chain genes in multiple sclerosis patients from Spain // J. Neuroimmunol. 1993. Vol. 47. P. 9-13.
Matesanz F., Fedetz M., Collado-Romero M. et al. Allelic expression and interleukin-2 polymorphisms in multiple sclerosis // J. Neuroimmunol. 2001. Vol. 119. P. 101-105.
Matesanz F., Caro-Maldonado A., FedetzM. et al. IL2RA/CD25 polymorphisms contribute to multiple sclerosis susceptibility // J. Neurol. 2007. Vol. 254. P. 682-684.
Mattila K.M., Luomala M., Lehtimaki T. et al. Interaction between ESR1 and HLA-DR2 may contribute to the development of MS in women // Neurology. 2001. Vol. 56. P. 1246-1247.
MattsonM. P. Apoptosis in neurodegenerative disorders // Nat. Rev. Mol. Cell. Biol. 2000. Vol. 1. P. 120-129.
Matusevicius D., Kivisakk P., He B.et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis // Mult. Scler. 1999. Vol. 5. P. 101-104.
McCuirk P., Mills K.H. Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious disease // Trends Immunol. 2002. Vol. 23. P. 450-455.
McDonald WI., Halliday A.M. Diagnosis and classification of multiple sclerosis // Br. Med. Bull. 1977. Vol. 33. P. 4-9.
McDonald WI., Compston A., Edan G. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis // Ann. Neurol. 2001. Vol. 50. P. 121-127.
McFarlandH.F., Martin R. Multiple sclerosis: a complicated picture of autoimmunity // Nat. Immunol. 2007. Vol. 8. P. 913-919.
McKenzie B.S., Kastelein R.A., Cua D.J. Understanding the IL-23-IL-17 immune pathway // Trends Immunol. 2006. Vol. 27. P. 17-23.
McMenamin P.G., Wealthall R.J., Deverall M. et al. Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localisation by environmental scanning electron microscopy and confocal microscopy // Cell. Tissue Res. 2003.Vol. 313. P. 259-269.
Medana I., Martinic M.A., Wekerle H., Neumann H. Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes // Am. J. Pathol. 2001. Vol. 159. P. 809-815.
Medveczky P., Antal J. et al. Myelin basic protein, an autoantigen in multiple sclerosis, is selectively processed by human trypsin 4 // FEBS Lett. 2006. Vol. 580. P. 545-52.
Mihailova S., Ivanova M., Mihaylova A. et al. Pro- and anti-inflammatory cytokine gene polymorphism profiles in Bulgarian multiple sclerosis patients // J. Neuroimmunol. 2005. Vol. 168. P. 138-143.
Miller S.D., McMahon E.J., Schreiner B., Bailey S.L. Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis // Ann. NY Acad. Sci. 2007. Vol. 1103. P. 179-191.
Mirel D.B., Barcellos L.F., J. Wang, S.L. et al. Analysis of IL4R haplotypes in predisposition to multiple sclerosis // Genes Immun. 2004. Vol. 5. P. 138-141.
Miyagishi R., Niino M., Fukazawa T. et al. C-C chemokine receptor 2 gene polymorphism in Japanese patients with multiple sclerosis // J. Neuroimmunol. 2003. Vol. 145. P. 135-8.
Motsinger A.A., Brassat D., Caillier S.J. et al. Complex gene-gene interactions in multiple sclerosis: a multifactorial approach reveals associations with inflammatory genes // Neurogenetics. 2007. Vol. 8. P. 11-20.
Musse, A.A., Boggs J.M. et al. Deimination of membrane-bound myelin basic protein in multiple sclerosis exposes an immunodominant epitope // Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. P. 4422-4427.
Mycko M., Kowalski W., Kwinkowski M. et al. Multiple sclerosis: the frequency of allelic forms of tumor necrosis factor and lymphotoxin-alpha // J. Neuroimmunol. 1998a. Vol. 84. P. 198-206.
Mycko M.P., Kwinkowski M., Tronczynska E. et al. Multiple sclerosis: the increased frequency of the ICAM-1 exon 6 gene point mutation genetic type K469 // Ann. Neurol. 1998b. Vol. 44. P. 70-75.
Nejentsev S., Laaksonen M., Tienari P.J. et al. Intercellular adhesion molecule-1 K469E polymorphism: study of association with multiple sclerosis // Hum. Immunol. 2003. Vol. 64. P. 345-349.
Neuhaus O., Wiendl H., Kieseier B.C. et al. Multiple sclerosis: Mitoxantrone promotes differential effects on immunocompetent cells in vitro // J. Neuroimmunol. 2005. Vol. 168. P. 128-137.
Niino M., Fukazawa T., Yabe I. et al. Vitamin D receptor gene polymorphism in multiple sclerosis and the association with HLA class II alleles // J. Neurol. Sci. 2000a. Vol. 177. P. 65-71.
Niino M., Kikuchi S., Fukazawa T. et al. Estrogen receptor gene polymorphism in Japanese patients with multiple sclerosis // J. Neurol. Sci. 2000b. Vol. 179. P. 70-75.
Niino M., Kikuchi S., Fukazawa T. et al. Genetic polymorphisms of osteopontin in association with multiple sclerosis in Japanese patients // J. Neuroimmunol. 2003. Vol. 136. P. 125-129.
O'Brien K., Fitzgerald D.C., Naiken K. et al. Role of the innate immune system in autoimmune inflammatory demyelination // Curr. Med. Chem. 2008. Vol. 15. P. 1105-1115.
O’ConnorK., Bar-OrA., HaflerD.A. The Neuroimmunology of Multiple Sclerosis: Possible Role of T and B Lymphocytes in Immunogenesis // J. Clin. Immunol. 2001. Vol. 21. P. 81-92.
O’Connor P. W., Li D., Freedman M.S. et al. A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses // Neurol. 2006. Vol. 66. P. 894-900.
O’Connor P., Comi G., Montalban X. et al. Oral fingolimod (FTY720) in multiple sclerosis: two-year results of a phase II extension study // Neurol. 2009. Vol. 72. P. 73-79.
O’Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets // Immunity. 1998. Vol. 8. P. 275-283.
Oksenberg R., Baranzini S.E., Sawcer S., Hauser S.L. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis // Nat. Rev. Genet. 2008. Vol. 9. P. 516-526.
Olsson T., Hillert J. The genetics of multiple sclerosis and its experimental models // Curr. Opin. Neurol. 2008. Vol. 21. № 3. P. 255-260.
Ota, K., Matsui M. et al. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis // Nature. 1990. Vol. 346. P 183-187.
Otaegui D., Saenz A., Camano P. et al. CD24 V/V is an allele associated with the risk of developing multiple sclerosis in the Spanish population // Mult. Scler. 2006. Vol. 12. P. 511-514.
Otaegui D., Saenz A., Ruiz-Martinez J. et al. UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor // Mult. Scler. 2007. Vol. 13. P 454-458.
Panitch H., Miller A., Paty D. et al. Interferon beta-1b in secondary progressive MS: results from a 3-year controlled study // Neurol. 2004. Vol. 63. P 1788-1795.
Partridge J.M., Weatherby S.J., Woolmore J.A. et al. Susceptibility and outcome in MS: associations with polymorphisms in pigmentation-related genes // Neurol. 2004. Vol. 62. P. 2323-2325.
Pihlaja H., Rantamaki T., Wikstrom J. et al. Linkage disequilibrium between the MBP tetranucleotide repeat and multiple sclerosis is restricted to a geographically defined subpopulation in Finland // Genes Immun. 2003. Vol. 4. P 138-146.
Polman C., Barkhof F., Sandberg-Wollheim M. et al. Treatment with laquinimod reduces development of active MRI lesions in relapsing MS // Neurol. 2005a. Vol. 64. P. 987-991.
Polman C.H, Reingold S.C., Edan G. et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the «McDonald Criteria» // Ann. Neurol. 2005b. Vol. 58. P 840-846.
Polman C.H., O’Connor P. W., Havrdova E. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis // N. Engl. J. Med. 2006. Vol. 54. P 899-910.
Polosukhina D.I., Kanyshkova T.G. et al. Hydrolysis of myelin basic protein by polyclonal catalytic IgGs from the sera of patients with multiple sclerosis // J. Cell. Mol. Med. 2004. Vol. 8. P. 359-368.
Polverini E., Rangaraj G. et al. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications // Biochemistry. 2008. Vol. 47. P. 267-282.
Ponomarenko N.A., Durova O.M. et al. Catalytic antibodies in clinical and experimental pathology: human and mouse models // J. Immunol. Methods. 2002. Vol. 269. P. 197-211.
Ponomarenko N.A., Durova O.M. et al. Autoantibodies to myelin basic protein catalyze site-specific degradation of their antigen // Proc. Natl. Acad. Sci. USA. 2006. Vol. 103. P 281-286.
Poser C.M., Paty D.W., Scheinberg L. et al. New diagnostic criteria for multiple sclerosis: guidellines for research protocols // Ann. Neurol. 1983. Vol. 13. P. 227-231.
Prat A., Antel J. Pathogenesis of multiple sclerosis // Curr. Opin. Neurol. 2005. Vol. 18. P. 225-230.
PRISMS Study Group. Randomized double-blind placebo-controlled study of interferon B-1a in relapsing/ remitting multiple sclerosis // Lancet. 1998. Vol. 352. P. 1498-1504.
Pritzker L.B., Joshi S. et al. Deimination of myelin basic protein. 1. Effect of deimination of arginyl residues of myelin basic protein on its structure and susceptibility to digestion by cathepsin D // Biochemistry. 2000. Vol. 39. P. 5374-5381.
Pugliatti M., Rosati G., Carton H. et al. The epidemiology of multiple sclerosis in Europe // Eur. J. Neurol. 2006. Vol. 13. P. 700-722.
Pulkkinen K., Luomala M., Kuusisto H. et al. Increase in CCR5 Delta32/Delta32 genotype in multiple sclerosis // Acta. Neurol. Scand. 2004. Vol. 109. P. 342-347.
Rasmussen H.B., Kelly M.A., Clausen J. Genetic susceptibility to multiple sclerosis: detection of polymorphic nucleotides and an intron in the 3’ untranslated region of the major histocompatibility complex class II transactivator gene // Hum. Immunol. 2001. Vol. 62. P. 371-377.
Reindl M., Linington C. et al. Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study // Brain. 1999. Vol. 122. Pt. 11. P. 2047-2056.
RichardsR.G., Sampson F.C., BeardS.M., Tappenden P. A review of the natural history and epidemiology of multiple sclerosis: implications for resource allocation and health economic models // Health Technol. Assess. 2002. Vol. 6. P. 1-73.
Riederer B., Honegger C.G. et al. The effect of age on the microheterogeneous pattern of human myelin basic protein // Gerontology. 1984. Vol. 30. P. 234-239.
Riise T., Wolfson C. The epidemiologic study of exogenous factors in the ethiology of multiple sclerosis // Neurology. 1997. Vol. 49. № 2. Suppl. 2. P. S1-S90.
Risch N.J. Searching for genetic determinants in the new millennium // Nature. 2000. Vol. 405. P. 847-856.
Rose J.W., Foley J., Carlson N. Monoclonal antibody treatments for multiple sclerosis // Curr. Neurol. Neu- rosci. Rep. 2008. Vol. 8. P. 419-426.
Rotstein Z., Hazan R., Barak Y., Achiron A. Perspectives in multiple sclerosis health care: special focus on the costs of multiple sclerosis // Autoimmun. Rev. 2006. Vol. 5. P. 511-516.
Rubio J.P., Stankovich J., Field J. et al. Replication of KIAA0350, IL2RA, RPL5 and CD58 as multiple sclerosis susceptibility genes in Australians // Genes Immun. 2008. Vol. 9. P. 624-630.
SadovnickA.D., Ebers G.C., DymentD.A., Risch N.J. Evidence for genetic basis of multiple sclerosis. The Canadian Collaborative Study Group // Lancet. 1996. Vol. 347. P. 1728-1730.
Sandberg-Wollheim M., Ciusani E., SalmaggiA., PociotF. An evaluation of tumor necrosis factor microsatellite alleles in genetic susceptibility to multiple sclerosis // Mult. Scler. 1995. Vol. 1. P. 181-185.
Sarial S., Shokrgozar M.A., Amirzargar A. et al. IL-1, IL-1R and TNFalpha gene polymorphisms in Iranian patients with multiple sclerosis // Iran J. Allergy Asthma Immunol. 2008. Vol. 7. P. 37-40.
Sawcer S., Ban M., Maranian M. et al. A high-density screen for linkage in multiple sclerosis // Am. J. Hum. Genet. 2005. Vol. 77. P. 454-467.
Schmidt S., Barcellos L.F., DeSombre K. et al. Multiple Sclerosis Genetics Group. Association of polymorphisms in the apolipoprotein E region with susceptibility to and progression of multiple sclerosis // Am. J. Hum. Genet. 2002. Vol. 70. P. 708-717.
Schumacher G.A., Beebe G., Kibler R.F. et al. Problems of experimental trials of therapy in multiple sclerosis - report by the Panel on the Evaluation of Experimental Trials of Therapy in Multiple Sclerosis // Ann. NY Acad. Sci. 1965. Vol. 122. P. 552-568.
Schwinzer R., Witte T., Hundrieser J. et al. Enhanced frequency of a PTPRC (CD45) exon A mutation (77C- ->G) in systemic sclerosis // Genes Immunol. 2003. Vol. 4. P. 168-169.
ScottL.J., FiggittD.P. Mitoxantrone: a review of its use in multiple sclerosis // CNS Drugs. 2004. Vol. 18. P. 379-396.
Semra Y.K., Seidi O.A., Sharief M.K. Disease activity in multiple sclerosis correlates with T lymphocyte expression of the inhibitor of apoptosis proteins // J. Neuroimmunol. 2002. Vol. 122. P. 159-166
Simpson J., Rezaie P., Newcombe J., CuznerM.L. Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue // Neuroimmunol. 2000. Vol. 108. P. 192200.
Siveke J.T., Hamman A. T helper 1 and T helper 2 cells respond differentially to chemokines // J. Immunol. 1998. Vol. 1660. P. 550-554.
Sospedra, M., MartinR. Immunology of multiple sclerosis // Annu. Rev. Immunol. 2005. Vol. 23. P. 683-747.
Steinke J.W., Borish L. Cytokines and chemokines // J. Allergy. Clin. Immunol. 2006. Vol. 117. P. S441-445.
Steinman L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system // Cell. 1996. Vol. 85. P. 299-302.
Steinman R.M., NussenzweigM.C. Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance // Proc. Natl. Acad. Sci. USA. 2002. Vol. 99. P. 351-358
Stepanov A.V., Belogurov A.A. Jr., Ponomarenko N.A. et al. Design of targeted B cell killing agents // PLoS One. 2011. Vol. 6. № 6. P. e20991.
Stuve O., Chabot S., Jung S.S. et al. Chemokine-enhanced migration of T lymphocytes is antagonized by interferon-1b through an effect on matrix metalloproteinase-9 // J. Neuroimunol. 1997. Vol. 80. P. 38-46.
Suppiah V., Goris A., Alloza I. et al. Polymorphisms in the interleukin-4 and IL-4 receptor genes and multiple sclerosis: a study in Spanish-Basque, Northern Irish and Belgian populations // Int. J. Immunogenet. 2005. Vol. 32. P. 383-388.
SvejgaardA. The immunogenetics of multiple sclerosis // Immunogenet. 2008. Vol. 60. P. 275-286.
SwanbergM., Lidman O., Padyukov L. et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction // Nat. Genet.
2005. Vol. 37. P. 486-494.
Tauber S.C., Nau R., Gerber J. Systemic infections in multiple sclerosis and experimental autoimmune encephalomyelitis // Arch. Physiol. Biochem. 2007. Vol. 113. P. 124-130.
The IFNB Multiple Sclerosis Study Group. Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial // Neurology. 1993. Vol. 43. P. 655-661.
Thomson G. Mapping disease genes: family-based association studies // Am. J. Hum. Genet. 1995. Vol. 57. P. 487-498.
Tienary P.J., Kuokkanen S., Pastinen T. et al. Golli-MBP gene in multiple sclerosis susceptibility // J. Neuro- immunol. 1998. Vol. 81. P. 158-167.
Tienary P.J., Wikstrom J., Sajantia A. et al. Genetic susceptibility to multiple sclerosis linked to myelin basic protein gene // Lancet. 1992. Vol. 340. P. 987-991.
Tintore M., Rovira A., Martinez M. et al. Isolated demyelinating syndromes: comparison of different MR imaging criteria to predict conversion to clinically definite multiple sclerosis // Am. J. Neuroradiol. 2000. Vol. 21. P. 702-706.
Trapp B.D., Peterson J., Ransohoff R.M., Rudick R. Axonal transection in the lesions of multiple sclerosis // New Engl. J. Med. 1998. Vol. 338. P. 278-285.
Urcelay E., Santiago J.L., Mas A. et al. Role of interleukin 4 in Spanish multiple sclerosis patients // J. Neu- roimmunol. 2005. Vol. 168. P. 164-167.
Vaknin-DembinskyA., Balashov K., Weiner H.L. IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production // J. Immunol.
2006. Vol. 176. P. 7768-7774.
Van Veen T., Kalkers N.F., Crusius J.B. et al. The FAS-670 polymorphism influences susceptibility to multiple sclerosis // J. Neuroimmunol. 2002. Vol. 128. P. 95-100.
Vandenbroeck K., Fiten P., Heggarty S. et al. Chromosome 7q21-22 and multiple sclerosis: evidence for a genetic susceptibility effect in vicinity to the protachykinin-1 gene // J. Neuroimmunol. 2002. Vol. 125. P. 141-148.
Vogler S., Goedde R., Miterski B. et al. Association of a common polymorphism in the promoter of UCP2 with susceptibility to multiple sclerosis. // J. Mol. Med. 2005. Vol. 83. P. 806-811.
Vyshkina T., Kalman B. Analyses of a MS-associated haplotype encompassing the CCL3 gene // J. Neuroim- munol. 2006. Vol. 176. P. 216-218.
Vyshkina T., Shugart Y.Y., Birnbaum G. et al. Association of haplotypes in the beta-chemokine locus with multiple sclerosis // Eur. J. Hum. Genet. 2005. Vol. 13. P. 240-247.
Wagstaff A.J., Goa K.L. Recombinant Interferon-beta-1 a: A Review of its Therapeutic Efficacy in Relapsing- Remitting Multiple Sclerosis // BioDrugs. 1998. Vol. 10. P. 471-494.
Wakkee M., Thio H.B. Drug evaluation: BG-12, an immunomodulatory dimethylfumarate // Curr. Opin. In- vestig. Drugs. 2007. Vol. 8. P. 955-962.
Warren K.G., Catz I. Administration of myelin basic protein synthetic peptides to multiple sclerosis patients // J. Neurol. Sci. 1995. Vol. 133. P. 85-94.
Warren K.G., Catz I. The effect of intrathecal MBP synthetic peptides containing epitope P85 WHFFKNIVTP96 on free anti-MBP levels in acute relapsing multiple sclerosis // J. Neurol. Sci. 1997. Vol. 148. P 67-78.
Warren K.G., Catz I., Ferenczi L.Z., KrantzM.J. Intravenous synthetic peptide MBP8298 delayed disease progression in an HLA Class II-defined cohort of patients with progressive multiple sclerosis: results of a 24-month double-blind placebo-controlled clinical trial and 5 years of follow-up treatment // Eur. J. Neurol. 2006. Vol. 13. P. 887-895.
Waubant E., Gee L., Miller K. et al. IFN-betala may increase serum levels of TIMP-1 in patients with relapsing-remitting multiple sclerosis // J. Interferon Cytokine Res. 2001. Vol. 21. P. 181-185.
Weber F., Fontaine B., Cournu-Rebeix I. et al. IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations // Genes Immunol. 2008. Vol. 9. P. 259-263.
WebserH.D. Growth factors and myelin damage in multiple sclerosis // Mult. Scler. 1997. Vol. 2. P. 113-120.
WeinerH.L. A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis // J. Neurol. 2008. Vol. 255. Suppl. 1. P. 3-11.
Wekerle H.C., Linington С., Lassman H., Meyermann W.B. Antigen presentation in the peripheral nervous system: Schwann cells present endogenous myelin autoantigens to lymphocytes // Trends Neurosci. 1986. Vol. 9. P. 271-278.
Wellcome Trust Case Control Consortium; Australo-Anglo-American Spondylitis Consortium (TASC). Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants // Nature Genet. 2007. Vol. 39. P. 1329-1337.
Wheeler R.D, Owens T. The changing face of cytokines in the brain: perspectives from EAE // Curr. Pharm. Des. 2005. Vol. 11. P. 1031-1037.
Wilson N.J., Boniface K., Chan J.R. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells // Nat. Immunol. 2007. Vol. 8. P. 950-957.
Wingerchuk D.M., Lucchinetti C.F. Comparative immunopathogenesis of acute disseminated encephalomyelitis, neuromyelitis optica, and multiple sclerosis // Curr. Opin. Neurol. 2007. Vol. 20. P. 343-350.
Wise L.H., Lanchbury J.S., Lewis C.M. Meta-analysis of genome searches // Ann. Hum. Genet. 1999. Vol. 63. P. 263-272.
Zand R., Li M.X. et al. Determination of the sites of posttranslational modifications in the charge isomers of bovine myelin basic protein by capillary electrophoresis-mass spectroscopy // Biochemistry. 1998. Vol. 37. P. 2441-2449.
Zayas M.D., Lucas M., Solano F. et al. Association of a CA repeat polymorphism upstream of the Fas ligand gene with multiple sclerosis // J. Neuroimmunol. 2001. Vol. 116. P. 238-241.
Zhang H., Zhao H., Merikangas K. Strategies to identify genes for complex diseases // Ann. Med. 1997. Vol. 29. P. 493-498.
Zhang Z., Duvefelt K., Svensson F. et al. Two genes encoding immune-regulatory molecules (LAG3 and IL7R) confer susceptibility to multiple sclerosis // Genes Immun. 2005. Vol. 6. P. 145-152.
Zhou Q., Rammohan K., Lin S. et al. CD24 is a genetic modifier for risk and progression of multiple sclerosis // Proc. Natl. Acad. Sci. USA. 2003. Vol. 100. P. 15041-15046.
Ziemssen T., Kumpfel T., Klinkert W.E. et al. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy // Brain. 2002. Vol. 125. P. 2381-2391.
Еще по теме Препараты, находящиеся на стадии клинических испытаний при РС:
- Глава 17. Трансплантационный иммунитет
- 5.2. Основные группы иммунотропных препаратов, нашедших применение в клинической практике.
- КЛИНИЧЕСКИЕ СИМПТОМОКОМПЛЕКСЫ ПРИ КОМАХ
- 5.3. Разработка и применение стандартов при производстве медицинских услуг
- 12.4 Научные исследования (R&D)
- 12.7 Тенденции: форма следует за функциональным содержанием (и деньгами)
- КЛИНИЧЕСКИЕ ПРОБЛЕМЫ ПРИ ВИЧ/СПИДе
- V- 1 .7. ЦЕРЕБРОЛИЗИН И ДЕТСКАЯ ПСИХОНЕВРОЛОГИЯ
- Разработка превентивной терапии на доклинической стадии нейродегенеративных заболеваний
- Рассеянный склероз: патогенез, диагностика и лечение
- Препараты, находящиеся на стадии клинических испытаний при РС
- Новые подходы к лечению БА
- ГОРМОНАЛЬНЫЕ ПРЕПАРАТЫ И ИНГИБИТОРЫ ОБРАЗОВАНИЯ ГОРМОНОВ, ПРИМЕНЯЕМЫЕ ПРИ ЛЕЧЕНИИ ОПУХОЛЕЙ
- Новые терапевтические мишени для лечения АГ при ХОБЛ
- Пептиды - регуляторы биологических процессов
- Оценка чувствительности родительской формы русской версии опросника PedsQL (2-4) к выраженности клинической симптоматики при пневмонии
- Оценка чувствительности детской и родительской форм русской версии опросника PedsQL (5-7) к выраженности клинической симптоматики при бронхиальной астме
- Эпидемиология рака лёгкого и клиническая картина при осложнённом течении опухолевого процесса
- Некоторые клинические особенности при отравлениях различными веществами из группы удушающих OB.