<<
>>

1.9.1. Причины применения непараметрической статистики в медицине

Изучая математическую статистику на 1 курсе, Вы познакомились с оценкой значимости различия средних в выборках. По терминологии математической статистики, процедуры, выполняемые при таких оценках, называются проверкой статистических гипотез.

Возможно, Вы вспомните, что:

во-первых, всегда делалось допущение о нормальном распределении (или близком к нормальному) изучаемых случайных величин (СВ) и равенстве их дисперсий;

во-вторых, все СВ, с которыми Вы имели дело ранее, являлись количественными признаками объектов наблюдения (число килограммов, число сантиметров и др.);

в-третьих, большинство встречавшихся Вам ранее СВ являлись непрерывными величинами, то есть их значения могли сколь угодно мало отличаться друг от друга;

и, наконец, все СВ были представлены абсолютными значениями (килограммы, сантиметры и др.).

При соблюдении перечисленных условий для оценки значимости различий должны применяться параметрические критерии, каким и является t-критерий Стьюдента, знакомый Вам по ручным расчетам и работой с программой Excel. Параметрическим он называется потому, что для его корректного использования необходимо учитывать параметры распределения, сравниваемых СВ, а именно:

- распределение СВ должно быть достаточно нормальным;

- дисперсии должны быть достаточно одинаковыми.

Однако значительная часть СВ, встречающихся в сфере медицины и здравоохранения не отвечает выше перечисленным условиям:

во-первых, известно много параметров организма и процессов, не соответствующих закону нормального распределения.

В качестве примеров можно привести индивидуальный уровень двигательной активности в популяции человека и животных, концентрацию некоторых гормонов в крови, количество принимаемых медикаментов населением (как правило, люди либо не принимают медикаменты совсем, либо принимают одновременно несколько видов препаратов и в значительных дозах) Например, является ли доход нормально распределенной величиной? - скорее всего, нет.

Случаи редких болезней не являются нормально распределенными в популяции, число автомобильных аварий также не является нормально распределенным, как и многие переменные, интересующие исследователя.

Более того, в большинстве случаев тип распределения СВ неизвестен, либо его невозможно определить вследствие малого объема выборки;

во-вторых, очень часто врачу приходится иметь дело с качественными (категориальными) признаками, для которых можно определить лишь частоту встречаемости. Это, например, наличие или отсутствие у пациента какого-либо симптома, исходы лечения (выздоровление, хронизация заболевания и др.), степень тяжести больного, оценка результатов лабораторного теста (низкий, нормальный, высокий уровень показателя) и др.;

в-третьих, многие СВ, которые нужно оценить являются по своему смыслу дискретными, то есть величинами имеющими строго раздельные значения, между которыми других значений быть не может. Сюда относятся многие диагностические признаки: число баллов, полученных при анкетировании, число приступов заболевания, число случаев выздоровления и др.;

в-четвертых, очень часто при статистическом анализе в медицине приходится сравнивать относительные СВ, отражающие долю (проценты, промилле и др.). Так, например, в здравоохранении принято выражать рождаемость, заболеваемость, смертность и многие другие явления в показателях интенсивности. Это число случаев, приходящихся на 1000, 10 000, 100 000 человек.

Поэтому применение параметрических критериев в медицине, в частности t-критерия Стьюдента, далеко не всегда оправдано. При невыполнении четырех выше указанных условий для проведения корректного исследования и получения верных выводов необходимо использовать непараметрические методы статистической обработки. Свое название они получили в связи с тем, что данных методы не требуют учета параметров распределения СВ, например, его симметричности, пикообразности и других.

С другой стороны, непараметрические тесты имеют меньшую статистическую мощность (менее чувствительны), чем их параметрические аналоги, и если важно обнаружить даже слабые отклонения (например, является ли данная пищевая добавка опасной для здоровья), следует особенно тщательно выбирать статистический критерий и проводить многократные испытания.

Кроме того, непараметрические методы наиболее приемлемы, когда объем выборок мал. Если данных много (например, n>100), то появляется возможность проверки типа распределения признаков. И если распределение близко к нормальному, то нет смысла использовать непараметрические критерии. В таких случаях параметрические методы будут более чувствительными.

Таким образом, для получения верного вывода, чрезвычайно важен выбор адекватного метода статистической обработки данных.

<< | >>
Источник: Аладышев А.В. и др.. Основы медицинской информатики: учебно-методическое пособие / Издательство Алтайский государственный медицинский университет,2008. – 140 с.. 2008

Еще по теме 1.9.1. Причины применения непараметрической статистики в медицине:

  1. Список литературы
  2. O.11.O. Методы оценки психологического самочувствия пациентов венерологического отделения районного кожно-венерологического диспансера
  3. 7.1. История применения психологических знаний в медицине
  4. ВВЕДЕНИЕ
  5. 4.6.3. Динамика электродиагностических показателей.
  6. ЗАКЛЮЧЕНИЕ
  7. Статистический анализ
  8. СПИСОК ЛИТЕРАТУРЫ
  9. ЗАДАНИЕ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  10. 1.9.1. Причины применения непараметрической статистики в медицине
  11. 1.9.3. Программное обеспечение для непараметрической статистики
  12. СУЩЕСТВУЮЩИЕ ПРОГРАММЫ ПО КЛИНИЧЕСКОЙ ИНФОРМАТИКЕ И ПРИМЕНЕНИЮ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ В МЕДИЦИНЕ
  13. СПИСОК ЛИТЕРАТУРЫ
  14. 1.1. Области применения телемедицины и основные понятия.
- Акушерство и гинекология - Анатомия - Андрология - Биология - Болезни уха, горла и носа - Валеология - Ветеринария - Внутренние болезни - Военно-полевая медицина - Восстановительная медицина - Гастроэнтерология и гепатология - Гематология - Геронтология, гериатрия - Гигиена и санэпидконтроль - Дерматология - Диетология - Здравоохранение - Иммунология и аллергология - Интенсивная терапия, анестезиология и реанимация - Инфекционные заболевания - Информационные технологии в медицине - История медицины - Кардиология - Клинические методы диагностики - Кожные и венерические болезни - Комплементарная медицина - Лучевая диагностика, лучевая терапия - Маммология - Медицина катастроф - Медицинская паразитология - Медицинская этика - Медицинские приборы - Медицинское право - Наследственные болезни - Неврология и нейрохирургия - Нефрология - Онкология - Организация системы здравоохранения - Оториноларингология - Офтальмология - Патофизиология - Педиатрия - Приборы медицинского назначения - Психиатрия - Психология - Пульмонология - Стоматология - Судебная медицина - Токсикология - Травматология - Фармакология и фармацевтика - Физиология - Фтизиатрия - Хирургия - Эмбриология и гистология - Эпидемиология -