<<
>>

Основные понятия и характеристики каналов связи

Существует множество видов каналов связи, которые, в зависимости от типа среды распространения принято делить на проводные, акустические, инфракрасные и радиоканалы. В зависимости от видов сигналов каналы связи можно различают

- непрерывные (на входе и выходе канала - непрерывные сигналы);

- дискретные или цифровые (на входе и выходе канала - дискретные сигналы);

- непрерывно-дискретные (на входе канала - непрерывные сигналы, а на

выходе - дискретные сигналы);

- дискретно-непрерывные (на входе канала - дискретные сигналы, а на выходе -

непрерывные сигналы).

По времени существования выделяют коммутируемые и некоммутируемые каналы. Коммутируемые (временные), создаются только на время передачи информации. Некоммутируемые каналы (выделенные)- создаются на длительное время с определенными постоянными характеристиками. Каналы также можно классифицировать по скорости передачи информации, диапазону частот, изменению параметров во времени (с постоянными и переменными параметрами) и т.д.

В общем случае, канал связи- это система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). В состав канала связи входят линии связи (физический уровень передачи), основные параметры которых можно разделить на две группы/12/: параметры распространения, характеризуют процесс распространения полезного сигнала, и параметры влияния, описывающие степень влияния на полезный сигнал других сигналов и помех. В каждой из этих групп можно выделить первичные и вторичные параметры. Первичные параметры характеризуют физическую природу линии, например погонную емкость или индуктивность электрического кабеля, степень неоднородности оптического волокна, а вторичные отражают некоторый обобщенный результат прохождения сигнала по линии связи. На вторичные параметры оказывают влияние как первичные параметры, так и помехи.

Например, при передаче по проводной линии сигналов различных частот из-за наличия распределенного комплексного сопротивления линии коэффициент передачи для гармонических колебаний с различными частотами будет различным. Это приводит к искажениям формы сигнала.

Основными вторичными характеристиками линии связи являются: -амплитудно-частотная характеристика (АЧХ);

-полоса пропускания;

-затухание;

-помехоустойчивость;

-пропускная способность;

-достоверность передачи данных.

АЧХ показывает, как изменяется амплитуда сигнала на выходе линии связи по сравнение с амплитудой на входе для различных частот передаваемого сигнала (рис.9).

Рисунок 9- Амплитудно-частотная характеристика

АЧХ дает полную картину о линии связи с точки зрения прохождения сигналов различных частот, однако получить ее достаточно трудно. Для этого нужно провести тестирование линии эталонными синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. Причем менять частоту входных синусоид нужно с небольшим шагом, а значит, количество экспериментов должно быть очень большим. Поэтому на практике вместо амплитудно-частотной характеристики применяются другие, упрощенные характеристики- полоса пропускания и затухание.

Полоса пропускания является производной характеристикой от АЧХ. Она представляет собой непрерывный диапазон частот, для которых отношение амплитуды выходного сигнала к входному превышает некоторый заранее заданный предел. Фактически полоса пропускания определяет частотный диапазон сигнала, при котором он передается по каналу связи без значительных искажений. Обычно полоса пропускания отсчитывается на уровне 0,7 от максимального значения АЧХ. На рис.10 показаны полосы пропускания для различных линий связи.

Рисунок 10- Полосы пропускания различных линий связи

Затухание определяется как относительное уменьшение амплитуды или мощности сигнала при передаче по каналу сигнала определенной частоты.

Часто при эксплуатации канала заранее известна основная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по каналу сигналов. Более

точные оценки возможны при знании затухания на нескольких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала. Затухание вычисляется по следующей формуле:

где Рвых - мощность сигнала на выходе канала, Рвх - мощность сигнала на входе канала.

Затухание всегда рассчитывается для определенной частоты и соотносится с длиной канала. На практике пользуются понятием "погонное затухание", т.е. затухание сигнала на единицу длины канала, например, затухание 0.3 дБ/метр. Чем меньше затухание, тем выше качество линии связи. Обычно затухание определяют для пассивных участков линии связи, состоящих из кабелей и кроссовых секций, без усилителей и регенераторов. Например, кабель с витыми парами категории 5 для внутренней проводки в зданиях, применяемый для локальных сетей, характеризуется затуханием не ниже -23.6 дБ для частоты 100 МГц при длине кабеля 100 м. У оптического кабеля затухание существенно более низкое, и обычно лежит в диапазоне от 0.2 до 3 дБ при длине кабеля в 1000 м. Следует отметить, что практически всем оптическим волокнам свойственна сложная зависимость затухания от длины волны, с тремя так называемыми «окнами прозрачности»- 850, 1300 и 1550 нм. Наименьшие потери

обеспечиваются на длине волны 1550 нм, что позволяет достичь максимальной дальности при фиксированной мощности передатчика и фиксированной чувствительности приемника. Многомодовый кабель обладает двумя первыми окнами прозрачности, т. е. 850 и 1300 нм, а одномодовый кабель- двумя окнами прозрачности на длинах волн 1310 и 1550 нм.

Помехоустойчивость линии определяет ее способность выполнять свои

функции под действием помех со стороны внешней среды или проводников

самого кабеля.

Помехоустойчивость можно оценить максимальной

интенсивностью помех, при которой нарушение функций еще не превышает

допустимых пределов. Помехоустойчивость зависит от типа используемой

физической среды, от экранирующих и подавляющих помехи средств самой

линии. Наименее помехоустойчивыми являются радиолинии, наиболее-

34

волоконно-оптические, малочувствительные к внешнему электромагнитному излучению. Помехоустойчивость может быть повышена за счет использования для передачи сигнала помехоустойчивых кодов и специальных алгоритмов обработки.

Пропускная способность линии характеризует максимально возможную скорость передачи данных по линии связи. Пропускная способность измеряется в битах в секунду. Это связано с тем, что данные в линиях связи передаются последовательно, то есть побитно. Теоретически максимально возможная пропускная способность вне зависимости от способа кодирования определяется теоремой Шеннона-Хартли:

отношение мощностей сигнала к мощности белого гауссовского шума. SNR - определяет число уровней сигнала, которые может различить приемник. Так, если SNR >3, то единичный сигнал может переносить два бита информации. Типичные скорости передачи для наиболее распространенных линий связи приведены в таблице 1.

Таблица 1- Скорость передачи данных по каналам связи

Канал связи Расстояние Скорость передачи
Неэкранированная витая 90 м до 115 Мбит/c
пара
Коаксиальный кабель до 2 км до 44 Мбит/с
Оптоволокно до 10 км до 10 Гбит/c
Радиоканал до 70 км до 400Кбит/c
Экранированная витая до 300 м до 16 Мбит/c
пара

Достоверность передачи определяется степенью искажения сигнала, т.е.

тем, насколько принятый сигнал соответствует переданному. В цифровых системах передачи информации достоверность передачи данных характеризует

Для ускорения разработки телемедицинских систем и оценки влияния параметров канала на качество передачи сигнала удобно использовать для моделирования среду MATLAB и Simulink, которая, предоставляя готовые к использованию модели каналов, позволяет интегрировать их в модель системы для оценки влияния различных искажений на качество передачи сигнала. Входящий в состав Simulink Communication Blockset предлагает модели таких каналов, как канал с аддитивным белым гауссовским шумом, двоичный симметричный канал, многолучевой рэлеевский канал с замиранием, райсовский канал с замиранием и др. Меняя параметры канала можно оценивать погрешность передачи для различных видов модуляции, типа помехоустойчивого кодирования и способов обработки сигнала.

2.3.

<< | >>
Источник: Конюхов В.Н.. Основы телемедицинских систем. 2012

Еще по теме Основные понятия и характеристики каналов связи:

  1. 4.1.1. СОДЕРЖАНИЕ ОСНОВНЫХ ПОЛОЖЕНИЙ ФЗ «О ЗАЩИТЕ НАСЕЛЕНИЯ И ТЕРРИТОРИЙ ОТ ЧС ПРИРОДНОГО И ТЕХНОГЕННОГО ХАРАКТЕРА»
  2. Острая печеночная недостаточность. Фульминантный гепатит
  3. Основной постулат и некоторые выводы из него
  4. 10. Общеметодическое значение феномена взаимосвязи дефектов в развитии и компенсаторных процессов. Концепции А.Адлера и Л.С.Выготского
  5. 24. Эмпатия. Основные составляющие активного эмпатического слушания как базовой техники эффективного психолого-педагогического общения
  6. Характеристика процесса познания человека.
  7. КОНТРОЛЬНЫЕ ВОПРОСЫ
  8. Термины
  9. Субъект управления
  10. Служба информационно-аналитического обеспечения
  11. Комплекс мероприятий, входящих в понятие «Система работы с кадрами»
  12. 14.9. Принципы Питера
  13. Поддержание нормального биоценоза влагалища как основное условие антиинфекционной защиты ЖРС.
  14. 4.3. Принципы построения МПКС
  15. ГЛАВА 1. ВНЕДРЕНИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В СИСТЕМЕ ПОСЛЕДИПЛОМНОГО ОБРАЗОВАНИЯ МЕДИЦИНСКИХ РАБОТНИКОВ
  16. ОГЛАВЛЕНИЕ
  17. Виды передаваемой информации, ее характеристики и способы представления.
  18. Основные понятия и характеристики каналов связи
- Акушерство и гинекология - Анатомия - Андрология - Биология - Болезни уха, горла и носа - Валеология - Ветеринария - Внутренние болезни - Военно-полевая медицина - Восстановительная медицина - Гастроэнтерология и гепатология - Гематология - Геронтология, гериатрия - Гигиена и санэпидконтроль - Дерматология - Диетология - Здравоохранение - Иммунология и аллергология - Интенсивная терапия, анестезиология и реанимация - Инфекционные заболевания - Информационные технологии в медицине - История медицины - Кардиология - Клинические методы диагностики - Кожные и венерические болезни - Комплементарная медицина - Лучевая диагностика, лучевая терапия - Маммология - Медицина катастроф - Медицинская паразитология - Медицинская этика - Медицинские приборы - Медицинское право - Наследственные болезни - Неврология и нейрохирургия - Нефрология - Онкология - Организация системы здравоохранения - Оториноларингология - Офтальмология - Патофизиология - Педиатрия - Приборы медицинского назначения - Психиатрия - Психология - Пульмонология - Стоматология - Судебная медицина - Токсикология - Травматология - Фармакология и фармацевтика - Физиология - Фтизиатрия - Хирургия - Эмбриология и гистология - Эпидемиология -